COSMO2

# Cosmology(II) for the HP-41

Overview

1°)  Empty Universes
2°)  Einstein's & Godel's Universes
3°)  Oscillating Universes
4°)  Tolman Universes
5°)  Other Cyclic Universes without Singularity

1°) Empty Universes

-This program summarizes several routines listed in "General Relativity & Cosmology" ( cf this page for the formulae )

-Given the cosmological parameter Lambda = L0  and the the redshift z of a galaxy or a quasar , "CSM" computes

D  = light-time distance                          t0 = Age of the Universe                  R0  = Radius of the Universe                            k = +1  for spherical Universes
D0 = comoving radial distance               P = Period of the Universe              Rmin = minimum radius of the universe               k =  0   for Euclidean Universes
DL = luminosity-distance                                                                              Rmax = maximum radius of the universe             k = -1   for hyperbolic Universes

and the recessional velocity VR  ( speed of light = 1 )

-All the distances are expressed in light-years
-All the times are expressed in years

Remark:

-The Hubble's constant has been chosen such that:    1 / H0 = 1.377 E10  years ( line 227 )
-Change this line if you want to use another value.

Data Registers:             R00 = VR  ( c = 1 )

R01 = D               R04 = t0             R06 = R0               R09 = k ( -1 , 0 , +1 )
R02 = D0             R05 = P             R07 = Rmin
R03 = DL                                       R08 = Rmax

( R10 = z    R11 = z + 1    R12 = L0    R13 & R14: temp )
Flag:  F24
Subroutines: /

-Lines 66 and 84 are three-byte GTO 04

 01  LBL "CSM"   02  DEG   03  STO 10    04  1   05  +   06  STO 11   07  X<>Y   08  STO 12   09  1   10  -   11  STO 04    12  RCL 12    13  X=0?   14  SIGN   15  /   16  ABS   17  SQRT   18  STO 13   19  *   20  STO 14   21  CLX   22  STO 05   23  STO 07   24  90    25  TAN   26  STO 08   27  SIGN   28  CHS   29  STO 09          30  RCL 12   31  ABS   32  SQRT   33  X=0?   34  SIGN   35  1/X 36  STO 01   37  X<> 04   38  ABS   39  SQRT   40  X=0?   41  SIGN   42  1/X   43  STO 00    44  STO 02   45  STO 03   46  STO 06    47  SIGN   48  RCL 12   49  X#0?   50  GTO 00   51  RCL 10   52  RCL 11   53  1   54  +   55  *   56  2   57  /    58  STO 03   59  RCL 11    60  LN   61  STO 00   62  STO 02    63  RCL 10   64  RCL 11          65  /    66  GTO 04   67  LBL 00   68  X<0?   69  GTO 01   70  X#Y? 71  GTO 02   72  CLX   73  STO 09   74  RCL 10   75  STO 00    76  STO 02   77  RCL 11    78  *   79  STO 03   80  RCL 08   81  STO 04    82  LASTX   83  LN   84  GTO 04   85  LBL 01   86  PI   87  RCL 01   88  *   89  STO 05    90  RCL 06    91  RCL 13   92  *   93  STO 08   94  RCL 14   95  ENTER   96  X^2   97  1   98  -   99  SQRT 100  + 101  RCL 13       102  ENTER 103  X^2 104  1 105  - 106  SQRT 107  + 108  / 109  LN 110  ST* 00 111  ST* 02 112  E^X-1 113  LASTX 114  CHS 115  E^X-1 116  - 117  2 118  / 119  RCL 11  120  * 121  ST* 03 122  RCL 13 123  1/X 124  ASIN 125  D-R 126  ST* 04 127  RCL 14       128  1/X 129  ASIN 130  D-R 131  - 132  GTO 04 133  LBL 02 134  X>Y? 135  GTO 03 136  RCL 14 137  ENTER 138  X^2 139  1 140  + 141  SQRT 142  + 143  RCL 13  144  ENTER 145  X^2 146  1 147  + 148  SQRT 149  + 150  / 151  LN 152  ST* 00 153  ST* 02 154  E^X-1 155  LASTX 156  CHS 157  E^X-1 158  - 159  2 160  / 161  RCL 11       162  * 163  ST* 03 164  RCL 13 165  1/X 166  ENTER 167  X^2 168  1 169  + 170  SQRT 171  + 172  LN 173  ST* 04 174  RCL 14 175  1/X 176  ENTER 177  X^2 178  1 179  + 180  SQRT 181  + 182  LN 183  - 184  GTO 04 185  LBL 03 186  X<>Y 187  STO 09  188  RCL 13 189  ACOS 190  RCL 14 191  ACOS 192  - 193  D-R 194  ST* 00 195  ST* 02 196  LASTX 197  SIN 198  RCL 11       199  * 200  ST* 03 201  RCL 06 202  RCL 13 203  * 204  STO 07 205  LASTX 206  1/X 207  ENTER 208  X^2 209  1 210  - 211  SQRT 212  + 213  LN 214  ST* 04 215  RCL 14  216  1/X 217  ENTER 218  X^2 219  1 220  - 221  SQRT 222  + 223  LN 224  - 225  LBL 04 226  SF 24 227  1377 E7 228  ST* 02 229  ST* 03 230  ST* 04 231  ST* 05 232  ST* 06 233  ST* 07 234  ST* 08 235  * 236  ST* 01 237  CF 24 238  RCL 09       239  RCL 06 240  RCL 04 241  RCL 01 242  END

( 289 bytes / SIZE 015 )

 STACK INPUTS OUTPUTS T / k Z / R0 Y L0 t0 X z D

Example:     With   z = 7  , here are the results given for 5 L-values   ( except  z = 0.3 if  L0 = 1.4 )

 L0 -0.4 0 +0.4 1 1.4 units Registers D 1.0823 1.2049 1.4013 2.8634 0.3877 x E10 R01 D0 2.5125 2.8634 3.4598 9.6390 0.4448 x E10 R02 DL 3.9784 4.3376 4.8774 7.7112 0.5743 x E11 R03 t0 1.2278 1.3770 1.6231 infinity 1.4419 x E10 R04 P 6.84 0 0 0 0 x E10 R05 R0 1.1638 1.3770 1.7777 1.3770 2.1772 x E10 R06 Rmin 0 0 0 0 1.1638 x E10 R07 Rmax 2.1772 infinity infinity infinity infinity x E10 R08 k -1 -1 -1 0 +1 x 1 R09 VR 1.8246 2.0794 2.5125 7 0.3230 x 1 R00

Notes:

-"CSM" always stops at the last line.
-"infinity" is actually displayed 9.999999999 E99

-The period P only exists if the cosmological parameter L0 is negative
-The maximum radius Rmax is finite only if L0 < 0.  In this case, we have a pulsating Universe with a big bang & a big crunch

-The minimum radius Rmin is positive ( > 0 ) only if L0 > 1

->  t0   P   R0   Rmin    Rmax   and  k  are of course independant from z

2°) Einstein's & Gödel's Universes

-The first version of Einstein's Universe was a static Spherical Universe.
-The radius R of the Universe is related to the cosmological constant Lambda and the mean density (rho) by

Lambda = 4 Pi G (rho) / c2                            where  G  is the gravitational constant
R      = 1 / SQRT(Lambda)                         and    c  is the speed of light

-K. Gödel found a rotating - but non expanding - Universe where the metric is defined by

ds2 = a2 [ ( dx0 + exp x1 dx2 )2 - ( dx1 )2 - (1/2) exp 2.x1 ( dx2 )2 - ( dx3 )2 ]      where  a  is a constant

-Assuming the pressure p = 0 , Einstein's equations lead to

Lambda = -1 / ( 2.a2 )  = - 4 Pi G (rho) / c2    and the period T of rotation of the matter is given by
T      =  2 Pi / omega  with  omega = [ 4 Pi G (rho) ]1/2

-"EINGD" takes the mean density (rho) and returns the main constants above

Data Registers: /

Flag:  F01   CF 01 =  Einstein's Universe
SF 01  =  Gôdel's Universe

Subroutines: /

 01  LBL "EINGD"  02  STO M  03  21156  04  *  05  ABS  06  SQRT  07  1/X  08  FS? 01  09  GTO 00  10  DEG  11  90  12  TAN  13  LBL 00  14  RCL M  15  835206  16  *  17  FS? 01  18  CHS  19  ENTER^  20  ABS  21  FS? 01  22  ST+ X  23  SQRT  24  1/X  25  0  26  X<> M  27  SIGN  28  RDN  29  END

( 57 bytes / SIZE 000 )

 STACK INPUT CF01 OUTPUTS SF01 OUTPUTS T / k = +/-1 k = +/-1 Z / T T Y / Lambda Lambda X rho ( kg/m3 ) R a L / rho rho

R  is expressed in light-years
Where   Lambda is expressed in (light-years) -2             k = +1 for a spherical Universe or -1 for a hyperbolic Universe
T  is expressed  in years

Example:   If  rho =  3.14 10 -28 kg/m3

•  Einstein's Universe CF 01

CF 01
3.14 E-28  XEQ "EINGD"  >>>>    R   =  6.1750  E10   l-y
RDN   Lam =  2.6225 E-22 (l-y) -2
RDN     T   =  9.9999  E99  years   ( no rotation )
RDN     k   =  +1

•  Gödel's Universe SF 01

SF 01
3.14 E-28  XEQ "EINGD"  >>>>    a   =   4.3664  E10   l-y
RDN   Lam =  -2.6225 E-22 (l-y) -2
RDN     T   =   3.8799  E11  years   ( period )
RDN     k   =  +1

Notes:

-Though it's probably not realistic, "EINGD" may also be used with a negative density, for example:

CF 01
-3.14 E-28  XEQ "EINGD"  >>>>    R   =    6.1750  E10   l-y
RDN   Lam =  -2.6225 E-22 (l-y) -2
RDN     T   =  9.9999  E99  years   ( no rotation )
RDN     k   =  -1

-With rho < 0 , Einstein's Universe becomes hyperbolic and stable

-David F. Crawford has created an alternative cosmology, "Curvature Cosmology" where a static spherical Universe is stable too !
-It's a tired-light model. ( cf reference [3] )

3°)  Oscillating Universes

-This program supposes that there is only a negative cosmological parameter Lambda and a radiation parameter ¶ ( matter-density = 0 )
-Though it's "probably" not realistic, it gives examples of pulsating universes without any singularity.

-As before, Einstein's equations are used.

Data Registers:             R00 = k  ( -1 , 0 , +1 )

R01 = D             R04 = R0             R07 = zmin < 0              R10 = Lambda < 0
R02 = t0             R05 = Rmin         R08 = zmax                     R11 = ¶
R03 = P             R06 = Rmax         R09 = z                          R12 = ¶ / Lambda
Flags: /
Subroutines: /

 01  LBL "PULSE"   02  DEG   03  STO 09           04  X<> Z   05  STO 11    06  X<>Y   07  STO 10    08  /   09  STO 12   10  LASTX   11  RCL 11   12  +   13  1   14  -   15  STO 00   16  RCL 10   17  ST+ X   18  /   19  CHS   20  STO 04   21  CHS   22  ENTER   23  X^2   24  RCL 12   25  -   26  SQRT   27  RCL Y   28  SIGN   29  *   30  +   31  X#0? 32  ST/ Y   33  X<0?   34  CLX   35  X<>Y   36  X<0?   37  CLX   38  X>Y?   39  X<>Y   40  SQRT   41  STO 05           42  X=0?   43  GTO 00   44  1/X   45  1   46  -   47  GTO 01   48  LBL 00   49  CLX   50  90   51  TAN   52  LBL 01   53  X<>Y   54  SQRT   55  STO 06    56  1/X   57  1    58  -   59  X>Y?   60  X<>Y   61  STO 07   62  X<>Y 63  STO 08   64  1   65  STO Y   66  RCL 04   67  ST+ Y   68  X^2   69  RCL 12    70  -   71  SQRT   72  STO 03           73  /   74  ASIN   75  RCL 04   76  RCL 09   77  1   78  +   79  X^2   80  1/X   81  +   82  RCL 03   83  /   84  ASIN   85  -   86  D-R   87  X<>Y   88  RCL 05    89  X>0?   90  GTO 00   91  CLX   92  RCL 08   93  1 94  +   95  1/X   96  X^2   97  RCL 04   98  +   99  RCL 03         100  / 101  ASIN 102  GTO 01 103  LBL 00 104  CLX 105  90 106  CHS 107  LBL 01 108  STO 03 109  - 110  D-R 111  90 112  RCL 03 113  - 114  D-R 115  ST+ X 116  STO 03 117  CLX 118  RCL 00  119  X#0? 120  SIGN 121  X<> 00 122  ABS 123  SQRT 124  X=0? 125  SIGN 126  1/X 127  STO 04        128  ST* 05 129  ST* 06 130  X<> Z 131  RCL 10  132  CHS 133  SQRT 134  ST+ X 135  ST/ 03 136  ST/ Z 137  / 138  1377 E7 139  ST* 03 140  ST* 04 141  ST* 05 142  ST* 06 143  ST* T 144  ST* Z 145  * 146  STO 01 147  X<>Y 148  STO 02 149  X<>Y 150  RCL 03  151  SIGN 152  CLX 153  RCL 00 154  RDN 155  END

( 197 bytes / SIZE 013 )

 STACK INPUTS OUTPUTS T / k Z ¶0 R0 Y L0 < 0 t0 X z D L / P

where the distances are expressed in light-years and the times in years

Example:    With   ¶0 = -0.0001  ,   L0 = -0.1  ,  z = 10

-0.0001  ENTER^
-0.1     ENTER^
10     XEQ "PULSE"   >>>>   D  = 1.2148    E10  l-y     = R01
RDN    t0 =  1.3336   E10  years = R02
RDN   R0 =  1.3129   E10  L-y   = R04
RDN    k  =   -1                          = R00
LASTX   P  =  1.3680   E11 years = R03

And we also have:

R05 =  Rmin =  1.2517   E08  l-y
R06 =  Rmax =  4.3544   E10 l-y
R07 =  zmin  =  -0.6985
R08 =  zmax  =  103.8852

-So, this universe is hyperbolic and its radius oscillates between  Rmin =  1.2517   E08  l-y  and  Rmax =  4.3544   E10 l-y
-The period between 2 minima or 2 maxima is P  =  1.3680   E11 years

R
|
|                    *                                        *
|              *          *                           *            *
|           *                *                     *                  *
|       *                       *               *                        *
|*                                      *                                        *
|-------------------------- P--------------------------2P---------------------------- t

-The program may be simplified if   L0  &  ¶0  are negative:

Data Registers:             R00 = D
R01 = t0             R03 = R0            R05 = Rmax
R02 = P             R04 = Rmin         R06-R07: temp
Flags: /
Subroutines: /

 01 LBL "CSM"  02 DEG  03 1  04 +  05 X^2  06 STO 00            07 SIGN  08 X<>Y  09 STO 03  10 ST+ Z  11 -  12 X<>Y  13 STO 06  14 -  15 STO 07  16 RCL 03 17 ST/ 06  18 ST+ X  19 /  20 STO 04            21 1  22 X<>Y  23 ST+ Y  24 X^2  25 RCL 06  26 -  27 SQRT  28 STO 05  29 /  30 ASIN  31 D-R  32 STO 01 33 RCL 00  34 1/X  35 RCL 04            36 +  37 RCL 05  38 /  39 ASIN  40 D-R  41 -  42 STO 00  43 PI  44 STO 02  45 2  46 /  47 ST+ 01  48 RCL 03 49 CHS  50 SQRT  51 ST/ 02  52 ST+ X  53 ST/ 00  54 ST/ 01  55 1377 E7  56 ST* 00  57 ST* 01  58 ST* 02  59 RCL 07            60 SQRT  61 /  62 STO 03  63 RCL 06  64 SQRT 65 RCL 05  66 RCL 04  67 -  68 SQRT  69 STO 05  70 /  71 RCL 03  72 ST* 05  73 *  74 STO 04            75 LASTX  76 RCL 02  77 RCL 01  78 RCL 00  79 END

( 105 bytes / SIZE 008 )

 STACK INPUTS OUTPUTS T / R0 Z q P Y L0 < 0 t0 X z D

where the distances are expressed in light-years and the times in years

Example:     q = -0.007    L0 = - 0.003    z = 7

-0.007  ENTER^
-0.003  ENTER^
7      XEQ "CSM"   >>>>    D = 1.2583  E10  L-y   = R00                                      ---Execution time = 4.5s---
RDN     t0 =  1.3621 E10  years = R01
RDN     P =  7.8981 E11  years = R02
RDN    R0 = 1.3681 E10  L-y   = R03

and   R04 = Rmin =  1.3593 E09  L-y   &   R05 = Rmax =  2.5140 E11  L-y

Notes:

q = deceleration parameter and radiation parameter   ¶ = q + L0

-If you prefer   ¶  in Z-register, simply delete line 10  ( ST+ Z )

-You can also compute zmax = -1 + R0 / Rmin
-In the above example,  zmax = 9.0646

-Such Universes are hyperbolic ( k = -1 )

4°)  Tolman Universes

-Here,  (Omega)mat = 0

Data Registers:             R00 = k  ( -1 , 0 , +1 )

R01 = D             R04 = Rmin             R07 to R13: temp
R02 = t0             R05 = R0
R03 = P             R06 = Rmax
Flag:  F24
Subroutines: /

 01 LBL "TOL"  02 DEG  03 1  04 +  05 X^2  06 1/X  07 STO 12  08 RDN  09 STO 13  10 X<>Y  11 STO 07  12 +  13 90  14 TAN  15 STO 03  16 STO 06  17 STO 09  18 CLX  19 STO 04  20 SIGN  21 -  22 STO 00  23 CHS  24 RCL 13  25 X=0?  26 SIGN  27 ST/ 07  28 /  29 STO 08  30 RCL 13  31 X=0?  32 GTO 01  33 ABS  34 SQRT  35 ST+ X  36 STO 10          37 CLX  38 2  39 /  40 STO 08 41 X^2  42 RCL 07  43 -  44 X<0?  45 GTO 02  46 SQRT  47 RCL 08  48 SIGN  49 *  50 RCL 08  51 +  52 CHS  53 RCL 07  54 RCL Y  55 X=0?  56 SIGN  57 /  58 X<0?  59 CLX  60 SQRT  61 X<>Y  62 X<0?  63 CLX  64 SQRT  65 XY  67 GTO 03  68 LBL 01  69 RCL 07  70 CHS  71 RCL 08          72 X=0?  73 GTO 02  74 /  75 X<0?  76 CLX  77 SQRT  78 ENTER  79 GTO 03  80 LBL 02 81 CLST  82 LBL 03  83 1  84 X<>Y  85 X>Y?  86 STO 06  87 X<> Z  88 X>Y?  89 STO 06  90 X>0?  91 X>Y?  92 FS? 30  93 STO 04  94 X<> Z  95 X>0?  96 X>Y?  97 FS? 30  98 STO 04  99 RCL 13 100 X=0? 101 GTO 01 102 X<0? 103 GTO 02 104 RCL 07 105 RCL 08 106 ST+ X 107 + 108 1 109 + 110 SQRT 111 1 112 + 113 RCL 08        114 + 115 STO 11 116 LASTX 117 RCL 07 118 X<0? 119 CLX 120 SQRT 121 + 122 X=0? 123 GTO 00 124 STO 05 125 / 126 ABS 127 LN 128 RCL 10 129 / 130 STO 02 131 RCL 11 132 RCL 08 133 ST+ X 134 RCL 12 135 ST* Y 136 X^2 137 + 138 RCL 07 139 + 140 SQRT 141 RCL 08 142 + 143 RCL 12 144 + 145 / 146 ABS 147 LN 148 RCL 10 149 / 150 STO 01 151 RCL 09        152 RCL 06 153 X=Y? 154 GTO 03 155 X^2 156 RCL 08 157 + 158 RCL 05 159 / 160 ABS 161 LN 162 ST+ X 163 RCL 10 164 / 165 STO 03 166 GTO 03 167 LBL 00 168 RCL 09 169 STO 02 170 GTO 03 171 LBL 01 172 1 173 RCL 07 174 X<0? 175 CLX 176 SQRT 177 STO 05 178 - 179 RCL 08 180 X=0? 181 GTO 04 182 / 183 STO 02 184 1 185 RCL 08 186 RCL 12 187 * 188 RCL 07 189 + 190 SQRT 191 - 192 RCL 08        193 / 194 STO 01 195 RCL 09 196 RCL 06 197 X=Y? 198 GTO 03 199 X^2 200 RCL 08 201 * 202 RCL 07 203 + 204 SQRT 205 RCL 05 206 - 207 ST+ X 208 RCL 08 209 / 210 STO 03 211 GTO 03 212 LBL 02 213 1 214 RCL 08 215 ST+ Y 216 X^2 217 RCL 07 218 - 219 SQRT 220 STO 01 221 / 222 ASIN 223 STO 09 224 90 225 + 226 D-R 227 RCL 10 228 / 229 STO 02 230 RCL 09 231 RCL 08 232 RCL 12        233 + 234 RCL 01 235 / 236 ASIN 237 - 238 D-R 239 RCL 10 240 / 241 STO 01 242 PI 243 ST+ X 244 RCL 10 245 / 246 STO 03 247 GTO 03 248 LBL 04 249 .5 250 ENTER 251 STO 02 252 RCL 12 253 * 254 - 255 STO 01 256 LBL 03 257 RCL 00 258 X#0? 259 SIGN 260 ENTER 261 X<> 00 262 ABS 263 SQRT 264 X=0? 265 SIGN 266 1/X 267 SF 24 268 1377 E7 269 ST* 01 270 ST* 02 271 ST* 03 272 * 273 STO 05        274 ST* 04 275 ST* 06 276 RCL 02 277 RCL 03 278 SIGN 279 CLX 280 RCL 01 281 CF 24 282 END

( 335 bytes / SIZE 014 )

 STACK INPUTS OUTPUTS T / k Z ¶0 R0 Y L0 < 0 t0 X z D L / P

where the distances are expressed in light-years and the times in years

Example1:    With   ¶0 = -0.0001  ,   L0 = -0.1  ,  z = 10

-0.0001  ENTER^
-0.1     ENTER^
10     XEQ "TOL"   >>>>   D  = 1.2148    E10  l-y     = R01
RDN    t0 =  1.3336   E10  years = R02
RDN   R0 =  1.3129   E10  L-y   = R05
RDN    k  =   -1                          = R00
LASTX   P  =  1.3680   E11 years = R03

And we also have:

R04 =  Rmin =  1.2517   E08  l-y
R06 =  Rmax =  4.3544   E10 l-y

Example2:       ¶0 = 0.1  ,  L0 = 0.6  ,   z  = 7

0.1   ENTER^
0.6   ENTER^
7    XEQ "TOL"  >>>>  D = 1.1670   E10   light-years
RDN   t0 = 1.2006   E10   years
RDN  R0 = 2.5140   E10   light-years
RDN   k  = -1  ( hyperbolic Universe )
LASTX  P =  9.9999   E99  ( infinite )

We also have:

R04 =  Rmin =  0
R06 =  Rmax =  9.9999   E99  ( infinte )

Example3:       ¶0 = 1.1  ,  L0 = 0  ,   z  = 7

1.1   ENTER^
0     ENTER^
7     XEQ "TOL"  >>>>  D = 6.6184   E09   light-years
RDN   t0 = 6.7210   E09   years
RDN  R0 = 4.3545   E10   light-years
RDN   k  = +1  ( spherical Universe )
LASTX  P =  2.8884   E11   years

We also have:

R04 =  Rmin =  0
R06 =  Rmax =  1.4442   E11  light-years

5°)  Other Cyclic Universes without Singularity

-Instead of solving Einstein's equations in a homogeneous & isotropic Universe:

2 R(t).d2R/dt2 + (dR/dt)2 + k.c2 = ( -(8.PI.G/c2 ).p + (Lambda).c2 ).R2(t)
(dR/dt)2 + k.c2  = ( (8.PI.G/3) (rho) + (Lambda/3).c2 ).R2(t)

"PULSE" employs these equations to calculate different parameters for a given date,
assuming that the radius of the Universe may be expressed as a function of time by

R(t) = A + B Sin2 ( Pi t / P )

A = Rmin  is the positive minimum of the scale factor and A+B = Rmax

-We have also    H = R' / R  ,  q = - R R" / R'2  ,  L = Lambda c2 R2 / ( 3 R'2 )   with  ' = d/dt

Data Registers:           •  R00 = k  ( -1 , 0 or +1 )                    ( Registers R00 thru R04 are to be initialized before executing "PULSE" )

•  R01 = A = Rmin ( in light-years )                                          R05 = R                                             R09: temp
•  R02 = B  ( in light-years )                                                      R06 = H ( km/s/Mpc )                        R10 = t
•  R03 = P = period ( in years )                                                 R07 = q = deceleration parameter
•  R04 = Lambda = Cosmological constant ( in light-years-2 )    R08 = L = Cosmological parameter
Flags: /
Subroutines: /

 01  LBL "PULSE"  02  DEG  03  STO 10          04  180  05  *  06  RCL 03  07  /  08  STO 09  09  ST+ X  10  SIN  11  RCL 02  12  *  13  PI  14  *  15  RCL 03  16  /  17  STO 06  18  X^2  19  RCL 00  20  + 21  RCL 09  22  SIN  23  X^2  24  RCL 02          25  *  26  RCL 01  27  +  28  STO 05  29  ST/ 06  30  X^2  31  /  32  RCL 09  33  ST+ X  34  COS  35  RCL 02  36  *  37  PI  38  RCL 03  39  /  40  X^2 41  *  42  RCL 05          43  /  44  ST+ X  45  STO 07   46  ST+ X  47  +  48  X<>Y  49  RCL 04  50  ST- Z  51  3  52  /  53  STO 08  54  -  55  16702 E2  56  CHS  57  ST/ Z  58  CHS  59  /  60  3 61  *  62  RCL 06          63  X=0?  64  GTO 00  65  X^2  66  ST/ 08  67  CHS  68  ST/ 07  69  GTO 01  70  LBL 00  71  CLX  72  RCL 04  73  X#0?  74  SIGN  75  90  76  TAN  77  *  78  STO 08  79  X<> L  80  RCL 07 81  SIGN  82  *  83  CHS  84  STO 07          85  LBL 01  86  CLX  87  RCL 06  88  9778 E8  89  *  90  STO 06  91  STO T  92  CLX  93  RCL 07  94  SIGN  95  CLX  96  RCL 05  97  END

( 134 bytes / SIZE 011 )

 STACK INPUTS OUTPUTS T / H ( km/s/Mpc ) Z / p/c2 ( kg/m3 ) Y / rho ( kg/m3 ) X t R(t) L / q

Where the distances are expressed in light-years and the times in years ( c = 1 )

H = Hubble's "constant" = R' / R
p = pressure
and      rho = density
R  = scale factor
q  = deceleration parameter

Example:   With k = +1 ( Spherical Universe )  ,  A = Rmin = 7 108 L-y  ,  B = 84 109 L-y  ,  P = 116 109 L-y  ,  Lambda = 10 -20 L-y -2

1       STO 00
7 E8    STO 01
84 E9   STO 02
116 E9  STO 03
E-20    STO 04

-If   t = 25 109 years    25 E9  XEQ "PULSE"  >>>>    R  = 3.367 E10  = R05
RDN   rho =  3.417 E-27 kg/m3
RDN   p/c2 = 1.910 E-27 kg/m3
RDN    H   =  64.519   km/s/Mpc  = R06
LASTX   q   =  -0.181  =  R07

and    R08 = Cosmological parameter = L = 0.766

Notes:

-In this fictitious Universe, the mass is not constant and the pressure - even the density - may be negative
-Here are a few other values:  (  9.999...  E99 = infinity )

 t R rho p/c^2 H q L 0 7 E8 3.660  E-24 -1.427  E-24 0 -9.999  E99 +9.999  E99 7 E9 3.683  E09 2.203  E-25 -1.067  E-25 223.556 -0.595 0.064 12 E9 9.264  E09 5.461  E-26 -2.689  E-26 145.311 -0.479 0.151 24 E9 3.146  E10 4.545  E-27 +1.222 E-27 68.121 -0.216 0.687 58 E9 8.470  E10 -5.737 E-27 +7.646 E-27 0 +9.999  E99 +9.999  E99

-With the same constants in R00 thru R03 but  R04 = Lambda = 0  we find:

 t R rho p/c^2 H q L 0 7 E8 3.666  E-24 -1.433  E-24 0 -9.999  E99 0 7 E9 3.683  E09 2.263  E-25 -1.127  E-25 223.556 -0.595 0 12 E9 9.264  E09 6.060  E-26 -3.288  E-26 145.311 -0.479 0 24 E9 3.146  E10 1.053  E-26 -4.765  E-27 68.121 -0.216 0 41 E9 6.812  E10 1.657  E-27 +7.586 E-28 25.997 +1.549 0 58 E9 8.470  E10 2.504  E-28 +1.659 E-27 0 +9.999  E99 0 75 E9 6.812  E10 1.657  E-27 +7.586 E-28 -25.997 +1.549 0 92 E9 3.146  E10 1.053  E-26 -4.765  E-27 -68.121 -0.216 0 104 E9 9.264  E09 6.060  E-26 -3.288  E-26 -145.311 -0.479 0 109 E9 3.683  E09 2.263  E-25 -1.127  E-25 -223.556 -0.595 0 116 E9 7 E8 3.666  E-24 -1.433  E-24 0 -9.999  E99 0

-Here, rho is always positive.
-After t = 58 E9, the results are symmetric, with a sign change for the Hubble parameter H ( contraction after expansion )

-During the expansion, the pressure p = 0 for t = 36.1378 E9 ( approximately )
and the deceleration parameter    q = 0 for t = 29 E9 = P / 4   ( exactly )  i-e  when R" = 0

Remark:

-Use the following variant if you prefer to get the density parameter and the pressure parameter ( instead of rho & p/c2 )

 01  LBL "PULSE"  02  DEG  03  STO 10          04  PI  05  RCL 03  06  /  07  STO 07  08  R-D  09  *  10  STO 09  11  ST+ X  12  SIN  13  RCL 02  14  * 15  RCL 07  16  *  17  STO 06          18  X^2  19  RCL 00  20  +  21  RCL 09  22  SIN  23  X^2  24  RCL 02  25  *  26  RCL 01  27  +  28  STO 05 29  ST/ 06  30  X^2  31  /  32  RCL 09          33  ST+ X  34  COS  35  RCL 02  36  RCL 07  37  X^2  38  *  39  *  40  RCL 05  41  /  42  ST+ X 43  STO 07  44  ST+ X  45  +  46  X<>Y  47  RCL 04          48  ST- Z  49  3  50  /  51  STO 08  52  -  53  RCL 06  54  X=0?  55  GTO 00  56  X^2 57  ST/ 08  58  ST/ Y  59  CHS  60  ST/ 07  61  ST/ Z  62  GTO 01  63  LBL 00  64  90  65  TAN  66  STO 08          67  R^  68  CHS  69  SIGN  70  * 71  R^  72  SIGN  73  RCL 08  74  ST* Y  75  RCL 07  76  SIGN  77  *  78  CHS  79  STO 07          80  CLX  81  RCL 04  82  X#0?  83  SIGN  84  ST* 08 85  LBL 01  86  CLX  87  RCL 06  88  9778 E8  89  *  90  STO 06          91  STO T  92  CLX  93  RCL 07  94  SIGN  95  CLX  96  RCL 05  97  END

( 128 bytes / SIZE 011 )

 STACK INPUTS OUTPUTS T / H ( km/s/Mpc ) Z / ¶ Y / OmegaMat X t R(t) L / q

Where the distances are expressed in light-years and the times in years ( c = 1 )

H        = Hubble's "constant" = R' / R
¶         = pressure parameter = 8 PI G p / ( c2 H2 )
and    OmegaMat = density parameter = 8 PI G rho / ( 3 H2 )
R         = scale factor
q         = deceleration parameter = - R R" / R'2

Example:   With k = +1 ( Spherical Universe )  ,  A = Rmin = 108 L-y  ,  B = 84 109 L-y  ,  P = 173 109 L-y  ,  Lambda = 10 -20 L-y -2

1       STO 00
1 E8    STO 01
84 E9   STO 02
173 E9  STO 03
E-20    STO 04

-If   t = 25 109 years    25 E9  XEQ "PULSE"  >>>>          R         =  16.256 E9  = R05                       ---Execution time = 4s---
RDN   Omega(mat) =  1.082
RDN          ¶           = -0.631
RDN          H          =  72.327   km/s/Mpc  = R06
LASTX         q         =  -0.383  =  R07

and    R08 = Cosmological parameter = L = 0.609

>>> The last 2 versions may be put together if we use a flag ( for instance F01 ):

Data Registers:           •  R00 = k  ( -1 , 0 or +1 )                    ( Registers R00 thru R04 are to be initialized before executing "PULSE" )

•  R01 = A = Rmin ( in light-years )                                          R05 = R                                             R09: temp
•  R02 = B  ( in light-years )                                                      R06 = H ( km/s/Mpc )                        R10 = t
•  R03 = P = period ( in years )                                                 R07 = q = deceleration parameter
•  R04 = Lambda = Cosmological constant ( in light-years-2 )    R08 = L = Cosmological parameter

Flag:  F01           CF 01 ->  Y-Z outputs = OmegaMat  &   ¶
SF 01  ->  Y-Z outputs =  rho & p / c2
Subroutines: /

 01  LBL "PULSE"  02  DEG  03  STO 10          04  PI  05  RCL 03  06  /  07  STO 07  08  R-D  09  *  10  STO 09  11  ST+ X  12  SIN  13  RCL 02  14  *  15  RCL 07  16  * 17  STO 06  18  X^2  19  RCL 00          20  +  21  RCL 09  22  SIN  23  X^2  24  RCL 02  25  *  26  RCL 01  27  +  28  STO 05  29  ST/ 06  30  X^2  31  /  32  RCL 09 33  ST+ X  34  COS  35  RCL 02          36  RCL 07  37  X^2  38  *  39  *  40  RCL 05  41  /  42  ST+ X  43  STO 07  44  ST+ X  45  +  46  CHS  47  X<>Y  48  RCL 04 49  ST+ Z  50  3  51  /  52  STO 08          53  -  54  FC? 01  55  GTO 00  56  16702 E2  57  ST/ Z  58  /  59  3  60  *  61  LBL 00  62  RCL 06  63  X=0?  64  GTO 00 65  X^2  66  ST/ 08  67  FC? 01  68  ST/ Y  69  FC? 01  70  ST/ Z  71  CHS  72  ST/ 07  73  GTO 01  74  LBL 00  75  CLX  76  90  77  TAN  78  STO 08          79  FS? 01  80  GTO 00 81  ENTER  82  R^  83  SIGN  84  *  85  R^  86  SIGN  87  RCL 08          88  ST* Y  89  LBL 00  90  RCL 07  91  SIGN  92  *  93  CHS  94  STO 07   95  CLX  96  RCL 04 97  X#0?  98  SIGN  99  ST* 08 100  LBL 01 101  CLX 102  RCL 06         103  9778 E8 104  * 105  STO 06 106  STO T 107  CLX 108  RCL 07 109  SIGN 110  CLX 111  RCL 05 112  END

( 156 bytes / SIZE 011 )

 STACK INPUTS OUTPUTS T / H ( km/s/Mpc ) Z / ¶  or  p/c^2 Y / OmMat or rho X t R(t) L / q

Where the distances are expressed in light-years and the times in years ( c = 1 )

H        = Hubble's "constant" = R' / R
¶         = pressure parameter = 8 PI G p / ( c2 H2 )
and    OmegaMat = density parameter = 8 PI G rho / ( 3 H2 )
R         = scale factor
q         = deceleration parameter = - R R" / R'2

Example:   With k = +1 ( Spherical Universe )  ,  A = Rmin = 108 L-y  ,  B = 84 109 L-y  ,  P = 173 109 L-y  ,  Lambda = 10 -20 L-y -2

1       STO 00
1 E8    STO 01
84 E9   STO 02                and   t = 25 109 years
173 E9  STO 03
E-20    STO 04

•  CF 01

25 E9  XEQ "PULSE"  >>>>          R         =  16.256 E9  = R05                       ---Execution time = 4s---
RDN   Omega(mat) =  1.082
RDN          ¶           = -0.631
RDN          H          =  72.327   km/s/Mpc  = R06
LASTX         q           =  -0.383  =  R07

and    R08 = Cosmological parameter = L = 0.609

•  SF 01

25 E9    R/S     >>>>    R  =  16.256 E9  = R05                       ---Execution time = 4s---
RDN   rho =  1.064  E-26 kg/m3
RDN   p/c2 = -2.066  E-27 kg/m3
RDN     H  =  72.327   km/s/Mpc  = R06
LASTX     q  =  -0.383  =  R07

and    R08 = Cosmological parameter = L = 0.609

Note:

-Though the real Universe is probably different from these models - but who knows ? -
you can use these programs to explore various pulsing Universes to get a better fit...

References:

[1]  Stamatia Mavridès - "L'Univers relativiste" - Masson  ISBN 2-225-36080-7  ( in French )
[2]  Jean Heidmann - "Introduction à la cosmologie" - PUF  ( in French )
[3]  David F. Crawford - "Curvature Cosmology" - ISBN 1-59942-413-4
or http://www.davidcrawford.bigpondhosting.com/cc2.pdf
[4]  J. Pachner - "An Oscillating Isotropic Universe without Singularity" - Mon. Not. R. astr. Soc. ( 1965 ) 131, 173-176
[5]  Hua-Hui Xiong, Yi-Fu Cai, Taotao Qiu, Yun-Song Piao, Xinmin Zhang - "Oscillating universe with quintom matter"