Age of the Universe & Redshift -> Distance for the HP-41
Overview
1°) Empty Universes
a) 0 < lambda < 1
b) General Case
2°)
Tolman Universes
a) General Case
b) Cyclic Universes
3°) Our Universe ?
a) Via Carlson Elliptic Integrals ( 2 programs )
b) Via Numerical Integration
( 3 programs )
4°) More General Cyclic Universes ( 3 programs
)
5°) More
General Universes
a) Cosmological Constant = 0 ( 4 programs )
b) Cosmological Constant
# 0 ( 4 programs )
6°) Redshifht -> Distance
a) Gauss-Legendre 2-point formula
b) Tanh-Sinh Quadrature
c) Cosmological
Constant = 0 ( 2 programs )
d) No Matter, Negative
Pressure
e) No Pressure,
Negative Matter
f) Tolman Universes
( 4 programs )
g) Milne Universes
-The age of the universe may be computed by the following integral:
t = (1/H) § 0 1 y. [ (Omega) lambda.y 4 + ( 1-(Omega)tot ).y2 + (Omega)mat .y + (Omega)rad ] -1/2 dy
where (Omega)tot = (Omega)mat +
(Omega) lambda + (Omega)rad ,
H = Hubble constant
-If the minimum radius of the Universe is > 0, the age of the Universe is infinite, but these programs calculate the time since the last minimum.
-In these programs below 1/H = 13.77172143
E9 years which corresponds
to H = 71 km/s/Mpc
or more generally, 1/H ( in GigaYears
) = 977.7922214 / H ( if H is expressed
in km/s/Mpc )
-In paragraph 6, we calculate:
D0 = comoving distance ( in Giga-light-years )
DL = luminosity-distance ( in Giga-light-years )
Formulae:
D = (c/H0) §y(em)1
y. [ (Omega)lambda.y4
+ ( 1-(Omega)tot ).y2 + (Omega)mat.y
+ (Omega)rad ] -1/2 dy
y(em) = y at the instant of emission
D0
= (c/H0) §y(em)1
[ (Omega)lambda.y4 + ( 1-(Omega)tot
).y2 + (Omega)mat.y + (Omega)rad
] -1/2 dy
z + 1 = 1/yem , z = redshift
, y = R/R0
where (Omega)tot = (Omega)mat + (Omega)lambda + (Omega)rad
F(x) = Sinh(x) if k = -1 hyperbolic spaceDL = R0 ( z + 1 ) F(D0/R0) where F(x) = x if k = 0 euclidean space R0 = current scale factor ( or radius )
F(x) = Sin(x) if k = +1 spherical space
1°) Empty Universes
a) 0 < Lambda < 1
Data Registers: R00: temp
Flags: /
Subroutines: /
01 LBL "AEU" 02 STO 00 03 1 04 X<>Y 05 - 06 SQRT 07 1/X 08 RCL 00 09 SQRT 10 STO 00 11 RCL Y 12 ST* Y 13 + 14 LN 15 RCL 00 16 / 17 977.7922214 18 R^ 19 / 20 ST* Z 21 * 22 END |
( 43 bytes / SIZE 001 )
STACK | INPUTS | OUTPUTS |
Y | H0 ( km/s/Mpc ) | R |
X | (Omega)lambda | T |
Example: H0 = 71 km/s/Mpc & (Omega)lambda = 0.41
71 ENTER^
0.41 XEQ "AEU" >>>> 16.31804618 Giga-years
X<>Y 17.92925416 Giga-light-years
Notes:
-The constant k is always equal to -1 in these cases ( hyperbolic universes )
-The deceleration parameter q = - (Omega)lambda
b) General Case
Data Registers: R00: temp
Flags: F06 & F07
Subroutines: /
01 LBL "AEU" 02 DEG 03 977.7922214 04 RCL Z 05 / 06 STO 00 07 X<>Y 08 X#0? 09 GTO 00 10 CLST 11 SIGN 12 CHS 13 RCL 00 14 ENTER 15 GTO 03 16 LBL 00 17 ENTER 18 CF 06 |
19 X<0? 20 SF 06 21 ABS 22 SQRT 23 1/X 24 LASTX 25 1 26 R^ 27 X#Y? 28 GTO 00 29 CLST 30 RCL 00 31 90 32 TAN 33 R^ 34 + 35 GTO 03 36 LBL 00 |
37 - 38 CF 07 39 X<0? 40 SF 07 41 ABS 42 SQRT 43 1/X 44 STO Z 45 * 46 FS? 06 47 GTO 01 48 ENTER 49 X^2 50 SIGN 51 FS? 07 52 CHS 53 ST+ L 54 X<> L |
55 SQRT 56 + 57 LN 58 GTO 02 59 LBL 01 60 ASIN 61 D-R 62 LBL 02 63 R^ 64 * 65 RCL 00 66 ST* Z 67 ST* T 68 * 69 R^ 70 SIGN 71 CLX |
72 PI 73 FC? 06 74 CLX 75 ST* L 76 CLX 77 FC?C 06 78 FS? 07 79 X<0? 80 STO T 81 ISG X 82 CLX 83 FC?C 07 84 CHS 85 X<> Z 86 X<>Y 87 LBL 03 88 END |
( 133 bytes / SIZE 001 )
STACK | INPUTS | OUTPUTS |
T | / | Rmin or R max |
Z | / | k ( -1 , 0 , +1 ) |
Y | H0 ( km/s/Mpc ) | R |
X | (Omega)lambda | T |
L | / | 0 or P |
Where P is the period
Example1: H0 = 71 km/s/Mpc & (Omega)lambda = -0.4
71 ENTER^
0.4 CHS XEQ "AEU" >>>>> T = 12.27985299 Giga-years
RDN R = 11.63922896 Giga-light-years
RDN k = -1
RDN Rmax = 21.77500351 Giga-light-years
LASTX P = 68.40819107 Giga-years
Example2: H0 = 71 km/s/Mpc & (Omega)lambda = 0.4
71 ENTER^
0.4 XEQ "AEU" >>>>> T = 16.23322493 Gy
RDN R = 17.77921592 Gly
RDN k = -1
RDN Rmin = 0
LASTX P = 0 ( no period )
Example3: H0 = 71 km/s/Mpc & (Omega)lambda = 1.4
71 ENTER^
1.4 XEQ "AEU" >>>>> T = 14.42035714 Gy
RDN R = 21.77500351 Gly
RDN k = +1
RDN Rmin = 11.63922896 Gly
LASTX P = 0 ( no period )
Example4: H0 = 71 km/s/Mpc & (Omega)lambda = 0
71 ENTER^
0 XEQ "AEU" >>>>> T = 13.77172143 Gy
RDN R = 13.77172143 Gly
RDN k = -1
RDN Rmin = 0
LASTX P = 0 ( no period )
Example5: H0 = 71 km/s/Mpc & (Omega)lambda = 1
71 ENTER^
1 XEQ "AEU" >>>>> T = 9.9999999 E99 Gy ( in fact: infinite )
RDN R = 13.77172143 Gly
RDN k = 0
RDN Rmin = 0
LASTX P = 0 ( no period )
Note:
-The deceleration parameter q = - (Omega)lambda
2°) Tolman Universes
-Here, (Omega)mat
= 0
-Such models have been studied
by Tolman.
R01 = T R03 = Rmin R05 = Rmax R11 = H0
R02 = P R04 = R
Flags: F24
Subroutines:
01 LBL "TOL" 02 DEG 03 90 04 TAN 05 STO 02 06 STO 05 07 STO 09 08 RDN 09 STO 06 10 X<>Y 11 STO 07 12 + 13 X<>Y 14 STO 11 15 CLX 16 STO 03 17 SIGN 18 - 19 STO 00 20 CHS 21 RCL 06 22 X=0? 23 SIGN 24 ST/ 07 25 / 26 STO 08 27 RCL 06 28 X=0? 29 GTO 01 30 ABS 31 SQRT 32 ST+ X |
33 STO 10 34 CLX 35 2 36 / 37 STO 08 38 X^2 39 RCL 07 40 - 41 X<0? 42 GTO 02 43 SQRT 44 RCL 08 45 SIGN 46 * 47 RCL 08 48 + 49 CHS 50 RCL 07 51 RCL Y 52 X=0? 53 SIGN 54 / 55 X<0? 56 CLX 57 SQRT 58 X<>Y 59 X<0? 60 CLX 61 SQRT 62 X<Y? 63 X<>Y 64 GTO 03 |
65 LBL 01 66 RCL 07 67 CHS 68 RCL 08 69 X=0? 70 GTO 02 71 / 72 X<0? 73 CLX 74 SQRT 75 ENTER 76 GTO 03 77 LBL 02 78 CLST 79 LBL 03 80 1 81 X<>Y 82 X>Y? 83 STO 05 84 X<> Z 85 X>Y? 86 STO 05 87 X>0? 88 X>Y? 89 FS? 30 90 STO 03 91 X<> Z 92 X>0? 93 X>Y? 94 FS? 30 95 STO 03 96 RCL 06 |
97 X=0? 98 GTO 01 99 X<0? 100 GTO 02 101 RCL 07 102 RCL 08 103 ST+ X 104 + 105 1 106 + 107 SQRT 108 1 109 + 110 RCL 08 111 ST+ Y 112 RCL 07 113 X<0? 114 CLX 115 SQRT 116 + 117 X=0? 118 GTO 00 119 STO 04 120 / 121 ABS 122 LN 123 RCL 10 124 / 125 STO 01 126 RCL 09 127 RCL 05 128 X=Y? |
129 GTO 03 130 X^2 131 RCL 08 132 + 133 RCL 04 134 / 135 ABS 136 LN 137 ST+ X 138 RCL 10 139 / 140 STO 02 141 GTO 03 142 LBL 01 143 1 144 RCL 07 145 X<0? 146 CLX 147 SQRT 148 STO 04 149 - 150 RCL 08 151 X=0? 152 GTO 04 153 / 154 STO 01 155 RCL 09 156 RCL 05 157 X=Y? 158 GTO 03 159 X^2 160 RCL 08 |
161 * 162 RCL 07 163 + 164 SQRT 165 RCL 04 166 - 167 ST+ X 168 RCL 08 169 / 170 STO 02 171 GTO 03 172 LBL 02 173 1 174 RCL 08 175 ST+ Y 176 X^2 177 RCL 07 178 - 179 SQRT 180 / 181 ASIN 182 90 183 + 184 D-R 185 RCL 10 186 / 187 STO 01 188 PI 189 ST+ X 190 LASTX 191 / 192 STO 02 193 GTO 03 |
194 LBL 04 195 .5 196 STO 01 197 GTO 03 198 LBL 00 199 RCL 09 200 STO 01 201 LBL 03 202 RCL 00 203 X#0? 204 SIGN 205 ENTER 206 X<> 00 207 ABS 208 SQRT 209 X=0? 210 SIGN 211 1/X 212 SF 24 213 977.7922214 214 RCL 11 215 / 216 ST* 01 217 ST* 02 218 * 219 STO 04 220 ST* 03 221 ST* 05 222 RCL 01 223 RCL 02 224 RDN 225 CF 24 226 END |
( 282 bytes / SIZE 012 )
STACK | INPUTS | OUTPUTS |
T |
/ |
P |
Z |
H0 |
k |
Y |
(Omega)rad |
R |
X |
(Omega)lambda |
T |
71 ENTER^
0.000049 ENTER^
0.732 XEQ "TOL" >>>> T = 20.19785676 Giga-years = R10
RDN R = 26.60483306 Giga-light-years = R04
RDN k = -1 = R00
RDN P = 9.999999999 E99 = R02 = period ( infinity = no period )
-We also have R03 = Rmin = 0 & R05 = Rmax = 9.999999999 E99
Example2: H0 = 71 km/s/Mpc (Omega)lambda = -0.1 (Omega)rad = -0.001
71 ENTER^
0.001 CHS ENTER^
0.1 CHS XEQ "TOL" >>>> T = 13.32700845 Gy = R10
RDN R = 13.12485669 Gly = R04
RDN k = -1 = R00
RDN P = 136.8163821 Gy = R02 = period
-We also have R03 = Rmin = 0.395565882 Gly & R05 = Rmax = 43.54821054 Gly
Notes:
-The constant k = -1 , 0 , +1 corresponds to hyperbolic, euclidean, spherical universes respectively.
-This program also works for pulsating universes.
b) Cyclic Universes
-With this program, you choose the minimum, current and maximum scale factor: Rmin R0 Rmax
and "AUR" returns the age of the Universe T, the period P, the current Hubble "constant" H0 and the deceleration parameter q
Data Registers: R00 = L (Gy)-2
R01 = R2min R04 = T
R02 = R20
R03 = R2max
Flags: /
Subroutines: /
01
LBL "AUR" 02 DEG 03 X^2 04 STO 00 05 STO 03 06 X<>Y 07 X^2 08 ENTER 09 STO 02 |
10
ST- Z 11 R^ 12 X^2 13 ST+ 00 14 STO 01 15 - 16 STO 04 17 R^ 18 ST* 04 |
19
- 20 ST* Y 21 RCL 01 22 RCL 03 23 - 24 / 25 ACOS 26 D-R 27 2 |
28
/ 29 X<> 04 30 ST+ Y 31 ST/ Y 32 SQRT 33 RCL 02 34 / 35 977.7922214 36 * 37 3 |
38
CHS 39 X<> 00 40 ST/ 00 41 SQRT 42 ST* 04 43 ST/ Y 44 PI 45 * 46 RCL 04 47 END |
( 76 bytes / SIZE 005 )
STACK | INPUTS | OUTPUTS |
T | / | q |
Z | Rmin | H0 |
Y | R0 | P |
X | Rmax | T |
Where T = age of the Universe , P = the period , H0 = the current Hubble "constant" ( in km/s/Mpc ) and q = the deceleration parameter
Example: Rmin = 1 R0 = 14 Rmax = 314 ( Gygalightyears )
1 ENTER^
14 ENTER^
314 XEQ "AUR" >>>> T = 13.96898881 = R04 ---Execution time = 2.8s---
RDN P = 986.4650960
RDN H0 = 69.59427439
RDN q = -0.003136335
-We also have the cosmological constant in R00 = L = -0.000030427 (Gy)-2
Note:
k is always equal to -1 ( hyperbolic space )
3°) Our Universe
?
a) Via Carlson Integrals
-The following program
only works if the cosmological constant
is positive
and if the quartic: (Omega)lambda.y 4 + ( 1-(Omega)tot ).y2 + (Omega) mat .y + (Omega)rad
has 2 distinct non-positive roots and a pair of complex conjugate roots.
-These conditions are precisely satisfied by our Universe !
Data Registers: R00 thru R21: temp
Flags: F00-F01-F02-F10
Subroutines: "RFZ" "RJZ" "P4" ( cf "Elliptic Integrals for the HP41" & "Polynomials for the HP41" )
01 LBL "AUM" 02 STO 12 03 X<>Y 04 STO 13 05 + 06 X<>Y 07 STO 14 08 + 09 1 10 - 11 STO 21 12 CHS 13 RCL 12 14 RCL 14 15 RCL 13 16 ST/ Z 17 ST/ T 18 / 19 0 20 RDN 21 XEQ "P4" 22 FS?C 01 23 FS?C 02 24 SF 41 25 STO 15 26 RDN |
27 STO 16 28 RDN 29 X<Y? 30 X<>Y 31 STO 12 32 STO 14 33 X<>Y 34 ST* 14 35 - 36 STO 11 37 R^ 38 RCL 15 39 R-P 40 X^2 41 STO 17 42 SIGN 43 RCL 16 44 RCL 12 45 ST- Z 46 RCL 15 47 - 48 R-P 49 X<>Y 50 CHS 51 X<>Y 52 1/X |
53 P-R 54 STO 18 55 X<>Y 56 STO 19 57 X<>Y 58 RCL 11 59 1/X 60 R^ 61 1/X 62 ST+ Y 63 ST+ Z 64 RDN 65 XEQ "RJZ" 66 STO 20 67 RCL 19 68 RCL 18 69 RCL 11 70 1/X 71 RCL 12 72 X=0? 73 GTO 00 74 CHS 75 1/X 76 ST+ Y 77 ST+ Z 78 RDN |
79 XEQ "RJZ" 80 ST- 20 81 LBL 00 82 RCL 15 83 RCL 12 84 - 85 X^2 86 RCL 16 87 X^2 88 + 89 RCL 11 90 * 91 SQRT 92 3 93 * 94 ST/ 20 95 RCL 15 96 X^2 97 RCL 14 98 - 99 4 100 * 101 RCL 17 102 RCL 15 103 X^2 104 - |
105 * 106 SQRT 107 RCL 17 108 RCL 14 109 RCL 15 110 ST+ X 111 STO 09 112 + 113 1 114 + 115 * 116 SQRT 117 RCL 17 118 RCL 09 119 - 120 RCL 14 121 ST* Y 122 + 123 SQRT 124 + 125 X^2 126 RCL 15 127 X^2 128 ST+ X 129 CHS 130 RCL 17 |
131 - 132 RCL 14 133 - 134 X<>Y 135 ST+ Y 136 XEQ "RFZ" 137 RCL 12 138 * 139 ST+ 20 140 RCL 21 141 X#0? 142 SIGN 143 RCL 21 144 ABS 145 SQRT 146 X=0? 147 SIGN 148 1/X 149 RCL 20 150 ST+ X 151 RCL 13 152 SQRT 153 / 154 13.77172143 E9 155 ST* Z 156 * 157 END |
( 230 bytes / SIZE 022 )
STACK | INPUTS | OUTPUTS |
Z |
(Omega) rad |
k |
Y |
(Omega)lamda |
R |
X |
(Omega) mat |
t |
Example1:
(Omega)mat = 0.044
, (Omega)lambda = 0.521
, (Omega)rad = 0.000049
0.000049 ENTER^
0.521
ENTER^
0.044
XEQ "AUM"
>>>> t = 15602214530 years
RDN R= 20881806280 light-years
RDN k = -1
Example2: (Omega)mat = 0 .271 , (Omega)lambda = 0.732 , (Omega) rad = 0.000049
0.000049 ENTER^
0.732
ENTER^
0.271
XEQ "AUM"
>>>> t = 13667886770
years
RDN R= 249407504600 light-years
RDN k = +1
-We can also use M-Code routines RF & RJ
-The following program employs a shorter formula given in reference [1]
Data Registers: R00 thru R15: temp
Flags: F00-F01-F02-F10
Subroutines: "RFZ" "RJZ" ( M-Code ) and "P4" ( cf "Carlson Elliptic Integrals" & "Polynomials for the HP41" )
01 LBL "AUM" 02 STO 03 03 X<>Y 04 STO 09 05 + 06 X<>Y 07 STO 01 08 + 09 977.7922214 10 R^ 11 / 12 STO 15 13 SIGN 14 - 15 STO 10 16 CHS 17 RCL 01 18 RCL 03 19 RCL 09 20 ST/ Z 21 ST/ T 22 / 23 0 24 RDN 25 XEQ "P4" 26 FS?C 01 27 FS?C 02 |
28 SF 99 29 STO 05 30 RDN 31 ABS 32 STO 06 33 RDN 34 X>Y? 35 X<>Y 36 STO 08 37 X<>Y 38 STO 07 39 * 40 STO 14 41 1 42 RCL 05 43 - 44 X^2 45 RCL 06 46 X^2 47 STO 13 48 + 49 STO 04 50 * 51 SQRT 52 RCL 07 53 RCL 08 54 1 |
55 ST- Z 56 - 57 * 58 STO 00 59 RCL 05 60 X^2 61 RCL 13 62 + 63 STO 03 64 * 65 SQRT 66 + 67 X^2 68 STO 11 69 RCL 00 70 RCL 14 71 * 72 RCL 03 73 * 74 RCL 04 75 * 76 SQRT 77 ST+ X 78 RCL 14 79 ST+ X 80 RCL 07 81 - |
82 RCL 08 83 - 84 RCL 03 85 RCL 05 86 - 87 * 88 + 89 STO 12 90 RCL 05 91 RCL 07 92 - 93 X^2 94 RCL 13 95 + 96 CHS 97 STO 13 98 RCL 11 99 + 100 STO 02 101 RCL 06 102 RCL 08 103 RCL 07 104 - 105 STO 01 106 * 107 STO 00 108 RCL 12 |
109 RCL 11 110 RJZ 111 RCL 13 112 * 113 RCL 01 114 * 115 1.5 116 / 117 X<> 02 118 RCL 07 119 X=0? 120 GTO 00 121 ENTER 122 ST* Y 123 - 124 / 125 1 126 + 127 SQRT 128 1/X 129 ENTER 130 ST+ Y 131 CHS 132 1 133 + 134 / 135 LN1+X |
136 ST+ 02 137 RCL 00 138 RCL 12 139 RCL 11 140 RFZ 141 ST+ X 142 RCL 07 143 * 144 ST+ 02 145 LBL 00 146 RCL 10 147 X#0? 148 SIGN 149 RCL 10 150 ABS 151 SQRT 152 X=0? 153 SIGN 154 1/X 155 RCL 02 156 RCL 09 157 SQRT 158 / 159 RCL 15 160 ST* Z 161 * 162 END |
( 203 bytes / SIZE 016 )
STACK | INPUTS | OUTPUTS |
T |
H0 |
/ |
Z |
(Omega) mat |
k |
Y |
(Omega)lamda |
R |
X |
(Omega)rad |
t |
Example1:
H0 = 71 km/s/Mpc (Omega)mat
= 0.044 , (Omega)lambda
= 0.521 , (Omega)rad
= 0.000049
0.044 ENTER^
0.521 ENTER^
0.000049 XEQ "AUM" >>>> t = 15.60221456 Giga-years ---Execution time = 34s---
RDN R= 20.88180628 Giga-light-years
RDN k = -1
Example2: H0 = 71 km/s/Mpc (Omega)mat = 0 .271 , (Omega)lambda = 0.732 , (Omega) rad = 0.000049
71 ENTER^0.271 ENTER^
0.732 ENTER^
0.000049 XEQ "AUM" >>>> t = 13.66788679 Giga-years ---Execution time = 34s---
RDN R= 249.4075046 Giga-light-years
RDN k = +1
b) Via Numerical Integration (
3 programs )
-The formula is applied to N subintervals
Data Registers: R00 & R04 thru R10: temp ( Registers R01 thru R03 are to be initialized before executing "AUM" )
• R01 = (Omega)mat
• R02 = (Omega)lambda
• R03 = (Omega)rad
Flags: /
Subroutines: /
01 LBL "AUM" 02 STO 05 03 1/X 04 STO 06 05 2 06 / 07 STO 07 08 1.6 09 STO 10 10 FRC 11 SQRT 12 * 13 STO 08 14 RCL 01 |
15 RCL 02 16 + 17 RCL 03 18 + 19 1 20 - 21 STO 00 22 CLX 23 STO 04 24 GTO 01 25 LBL 00 26 STO 09 27 X^2 28 ENTER |
29 ENTER 30 X^2 31 RCL 02 32 * 33 RCL 00 34 - 35 * 36 RCL 01 37 + 38 * 39 RCL 03 40 + 41 SQRT 42 / |
43 RCL 09 44 * 45 RTN 46 LBL 01 47 RCL 07 48 RCL 08 49 - 50 XEQ 00 51 ST+ 04 52 RCL 07 53 XEQ 00 54 RCL 10 55 * 56 ST+ 04 |
57 RCL 07 58 RCL 08 59 + 60 XEQ 00 61 ST+ 04 62 RCL 06 63 ST+ 07 64 DSE 05 65 GTO 01 66 RCL 00 67 X#0? 68 SIGN 69 RCL 00 70 ABS |
71 SQRT 72 X=0? 73 SIGN 74 1/X 75 1.8 76 * 77 RCL 04 78 R^ 79 * 80 7650956350 81 ST* Z 82 * 83 END |
( 118 bytes / SIZE 011 )
STACK | INPUTS | OUTPUTS |
Z |
/ |
k |
Y |
/ |
R |
X |
N |
t |
Where N = number of subintervals
Example1: (Omega)mat = 0 .044 , (Omega)lambda = 0.521 , (Omega) rad = 0.000049
0.000049 STO 03
0.521
STO 02
0.044
STO 01
and if you choose N = 50
50 XEQ "AUM"
>>>>
t = 15602214540 years
RDN R= 20881806270
light-years
RDN k = -1
Example2: (Omega)mat = 0 .271 , (Omega)lambda = 0.732 , (Omega) rad = 0.000049
0.000049 STO 03
0.732
STO 02
0.271
STO 01
and if you choose N = 50
50 XEQ
"AUM" >>>> t = 13667886820 years
RDN
R= 249407504600 light-years
RDN
k = +1
Notes:
-However, this program is slower with N = 50 than the version listed in paragraph 3°) a)
-On the other hand, Hubble constant is not known with an accuracy of 10 digits.
-So a smaller N-value is enough to get a 4-digit precision: N = 10 seems quite enough !
-We can also use Gauss-Legendre 2-point formula.
-The following program makes the change of variable: y (Omega)mat + (Omega) rad = u2
Data Registers: R00 & R04 thru R11: temp
R01 = (Omega)mat
R02 = (Omega)lambda
R03 = (Omega)rad
Flags: /
Subroutines: /
01 LBL "AUM" 02 STO 03 03 X<>Y 04 STO 02 05 + 06 X<>Y 07 STO 01 08 + 09 977.7922214 10 R^ 11 / 12 STO 00 13 SIGN 14 - 15 STO 04 |
16 RCL 01 17 RCL 03 18 + 19 SQRT 20 RCL 03 21 SQRT 22 STO 07 23 - 24 50 25 STO 09 26 ST+ 09 27 / 28 STO Y 29 3 30 SQRT |
31 STO 11 32 / 33 STO 08 34 - 35 STO 05 36 2 37 / 38 ST- 07 39 CLX 40 LBL 01 41 RCL 07 42 RCL 08 43 X<> 05 44 STO 08 45 + |
46 STO 07 47 X^2 48 STO 10 49 RCL 03 50 - 51 RCL 01 52 / 53 ENTER 54 X^2 55 STO 06 56 RCL 02 57 * 58 RCL 04 59 - 60 RCL 06 |
61 * 62 RCL 10 63 + 64 SQRT 65 / 66 RCL 07 67 * 68 + 69 DSE 09 70 GTO 01 71 RCL 11 72 * 73 RCL 08 74 * 75 RCL 00 |
76 * 77 RCL 01 78 / 79 RCL 04 80 X#0? 81 SIGN 82 RCL 00 83 RCL 04 84 ABS 85 SQRT 86 X=0? 87 SIGN 88 / 89 R^ 90 END |
( 115 bytes / SIZE 012 )
STACK | INPUTS | OUTPUTS |
T |
H ( km/s/Mpc ) |
/ |
Z |
(Omega)mat > 0 |
k |
Y |
(Omega)lambda |
R |
X |
(Omega)rad |
T |
Example1: H = 71 km/s/Mpc
(Omega)mat = 0.044 ,
(Omega)lambda = 0.521 ,
(Omega) rad = 0.000049
0.044 ENTER^
0.521 ENTER^
0.000049 XEQ "AUM" >>>> T = 15.60221456 ( Gy ) ---Execution time = 108s---
RDN R = 20.88180628 ( Gly )
RDN k = - 1 ( hyperbolic space )
Example2: H = 71 km/s/Mpc (Omega)mat = 0.271 , (Omega)lambda = 0.732 , (Omega) rad = 0.000049
71 ENTER^0.271 ENTER^
0.732 ENTER^
0.000049 XEQ "AUM" >>>> T = 13.66788679 ( Gy )
RDN R = 249.4075046 ( Gly )
RDN k = + 1 ( spherical space )
Example3: H = 71 km/s/Mpc (Omega)mat = 0.271 , (Omega)lambda = 0.729 , (Omega) rad = 0
71 ENTER^0.271 ENTER^
0.729 ENTER^
0 XEQ "AUM" >>>> T = 13.65710890 ( Gy )
RDN R = 13.77172143 ( Gly )
RDN k = 0 ( Euclidean space )
Notes:
50 subintervals seem enough for a very good precision
Change line 24 if you prefer another value.
-We may simplify the program if (Omega) rad = 0
-The following routine employs again Gauss-Legendre 2-point formula ( and the change of variable y2 = u )
Data Registers: R00 to R07: temp
Flags: /
Subroutines: /
01 LBL "AUM" 02 STO 02 03 2 04 / 05 X<>Y 06 STO T 07 ST+ T 08 - 09 STO 04 10 3 11 * 12 X<>Y 13 STO 00 14 SIGN 15 - 16 + |
17 STO 05 18 CLX 19 SIGN 20 50 21 STO 03 22 ST+ 03 23 / 24 STO Y 25 3 26 SQRT 27 / 28 STO 01 29 - 30 STO 06 31 2 32 / |
33 CHS 34 STO 07 35 CLX 36 LBL 01 37 RCL 07 38 RCL 01 39 X<> 06 40 STO 01 41 + 42 STO 07 43 X^2 44 ENTER 45 X^2 46 RCL 04 47 * 48 RCL 05 |
49 - 50 RCL Y 51 * 52 RCL 02 53 + 54 SQRT 55 / 56 + 57 DSE 03 58 GTO 01 59 RCL 01 60 * 61 3 62 SQRT 63 * 64 977.7922214 |
65 RCL 00 66 / 67 STO 06 68 * 69 RCL 05 70 X#0? 71 SIGN 72 RCL 06 73 RCL 05 74 ABS 75 SQRT 76 X=0? 77 SIGN 78 / 79 R^ 80 END |
( 107 bytes / SIZE 008 )
STACK | INPUTS | OUTPUTS |
Z |
H ( km/s/Mpc ) |
k |
Y |
q |
R |
X |
(Omega)mat |
T |
Example1: H = 71 km/s/Mpc
q = -0.5 (Omega)mat
= 0.044
-0.5 ENTER^
0.044 XEQ "AUM" >>>> T = 15.62753949 ( Gy ) ---Execution time = 82s---
RDN R = 20.90467233 ( Gly )
RDN k = - 1 ( hyperbolic space )
Example2: H = 71 km/s/Mpc q = -0.6 (Omega)mat = 0.271
71 ENTER^-0.6 ENTER^
0.271 XEQ "AUM" >>>> T = 13.68753141 ( Gy ) ---Execution time = 82s---
RDN R = 170.8171812 ( Gly )
RDN k = + 1 ( spherical space )
Example3: H = 71 km/s/Mpc q = -0.595 (Omega)mat = 0.27
71 ENTER^
-0.595 ENTER^
0.27 XEQ "AUM" >>>> T = 13.67100708 ( Gy ) ---Execution time = 82s---
RDN R = 13.77172143 ( Gly )
RDN k = 0 ( Euclidean space )
Example4: H = 71 km/s/Mpc q = -0.5 (Omega)mat = 0
71 ENTER^
-0.5 ENTER^
0 XEQ "AUM" >>>> T = 17.16576879 ( Gy ) ---Execution time = 82s---
RDN R = 19.47615522 ( Gly )
RDN k = - 1 ( hyperbolic space )
Notes:
-N = 50 subintervals seem enough for a very good accuracy ( line 20 )
-Here we have q = (1/2) (Omega)mat - (Omega)lambda
-Though this program works well if (Omega)mat = 0 , it's much slower than the routine listed in paragraph 1°)
4°) More General Cyclic Universes
-The age of the Universe T = (c/H) § ymin 1 y. [ (Omega) lambda.y 4 + ( 1-(Omega)tot ).y2 + (Omega) mat .y + (Omega)rad ] -1/2 dy
-The Period P = 2 (c/H) § ymin ymax y. [ (Omega) lambda.y 4 + ( 1-(Omega)tot ).y2 + (Omega) mat .y + (Omega)rad ] -1/2 dy
-The following program assumes that the quartic equation (Omega) lambda.y 4 + ( 1-(Omega)tot ).y2 + (Omega) mat .y + (Omega)rad = 0 has (at least ) 2 positive real roots.
-They are computed by Newton's method.
-The integrals are then calculated by Gauss-Legendre 3-point formula, applied to N subintervals between ymin & 1 and 3.N subintervals between 1 & ymax ( lines 266-267 )
Data Registers: • R00 = H ( km/s/Mpc ) ( Registers R00 thru R03 are to be initialized before executing "ACU" )
• R01 = (Omega)mat R04 = Rmin R06 thru R18: temp
• R02 = (Omega)lambda < 0 R05 = Rmax
• R03 = (Omega)rad
Flags: /
Subroutines: /
01 LBL "ACU" 02 STO 16 03 1 04 RCL 01 05 - 06 RCL 02 07 - 08 RCL 03 09 - 10 STO 06 11 STO 17 12 2 E-8 13 STO 11 14 CLX 15 STO 09 16 STO 10 17 LBL 01 18 RCL 10 19 ENTER 20 ENTER 21 X^2 22 RCL 02 23 * 24 RCL 06 25 + 26 * 27 RCL 01 28 + 29 * 30 RCL 03 31 + 32 X<>Y 33 X^2 34 RCL 02 35 * 36 ST+ X 37 RCL 06 38 + 39 R^ 40 * 41 ST+ X 42 RCL 01 |
43 + 44 / 45 - 46 STO 10 47 ST- Y 48 X=0? 49 SIGN 50 / 51 ABS 52 RCL 11 53 X<Y? 54 GTO 01 55 RCL 10 56 STO 04 57 ENTER 58 X^2 59 RCL 02 60 * 61 RCL 06 62 + 63 STO 07 64 * 65 RCL 01 66 + 67 STO 08 68 LBL 02 69 RCL 10 70 RCL 10 71 RCL 10 72 RCL 04 73 + 74 * 75 RCL 02 76 * 77 RCL 07 78 + 79 * 80 RCL 08 81 + 82 X<>Y 83 3 84 * |
85 RCL 04 86 ST+ X 87 + 88 RCL 02 89 * 90 R^ 91 * 92 RCL 07 93 + 94 / 95 - 96 STO 10 97 ST- Y 98 X=0? 99 SIGN 100 / 101 ABS 102 RCL 11 103 X<Y? 104 GTO 02 105 RCL 10 106 STO 05 107 RCL 04 108 + 109 CHS 110 2 111 / 112 ENTER 113 X^2 114 RCL 04 115 RCL 05 116 + 117 RCL 04 118 * 119 RCL 05 120 X^2 121 + 122 STO 07 123 - 124 RCL 06 125 RCL 02 126 / |
127 ST+ 07 128 - 129 X<0? 130 GTO 04 131 SQRT 132 ST+ Z 133 - 134 X>Y? 135 X<>Y 136 RCL 04 137 X>Y? 138 X<>Y 139 RCL 05 140 X>Y? 141 X<>Y 142 STO 07 143 RDN 144 X<Y? 145 X<>Y 146 RDN 147 X<Y? 148 X<>Y 149 R^ 150 X<Y? 151 X<>Y 152 STO 05 153 RDN 154 STO 04 155 X<>Y 156 STO 06 157 1 158 RCL 04 159 X<Y? 160 GTO 03 161 RCL 06 162 X<> 04 163 X<> 05 164 STO 06 165 LBL 03 166 RCL 06 167 RCL 07 168 + |
169 CHS 170 X<> 06 171 ST* 07 172 GTO 05 173 LBL 04 174 RCL 04 175 RCL 05 176 X>Y? 177 X<>Y 178 STO 04 179 X<>Y 180 STO 05 181 + 182 STO 06 183 LBL 05 184 1 185 RCL 05 186 RCL 04 187 X<=0? 188 LN 189 ST- Z 190 - 191 STO 08 192 / 193 SQRT 194 RAD 195 ASIN 196 STO 11 197 1.6 198 STO 15 199 GTO 14 200 LBL 00 201 SIN 202 X^2 203 RCL 08 204 * 205 RCL 04 206 + 207 ENTER 208 STO Z 209 RCL 06 210 + |
211 * 212 RCL 07 213 + 214 SQRT 215 / 216 RTN 217 LBL 10 218 RCL 11 219 RCL 09 220 - 221 X<>Y 222 STO 13 223 / 224 STO 14 225 2 226 / 227 ST+ 09 228 .6 229 SQRT 230 * 231 STO 10 232 CLX 233 STO 12 234 LBL 12 235 RCL 09 236 RCL 10 237 - 238 XEQ 00 239 ST+ 12 240 RCL 09 241 XEQ 00 242 RCL 15 243 * 244 ST+ 12 245 RCL 09 246 RCL 10 247 + 248 XEQ 00 249 ST+ 12 250 RCL 14 251 ST+ 09 |
252 DSE 13 253 GTO 12 254 RCL 12 255 * 256 RTN 257 LBL 14 258 RCL 16 259 XEQ 10 260 STO 18 261 SIGN 262 ASIN 263 X<> 11 264 STO 09 265 RCL 16 266 3 267 * 268 XEQ 10 269 RCL 18 270 ST+ Y 271 X<>Y 272 ST+ X 273 1.8 274 RCL 02 275 CHS 276 SQRT 277 * 278 ST/ Z 279 / 280 977.7922214 281 RCL 00 282 / 283 ST* Y 284 ST* Z 285 RCL 17 286 SQRT 287 / 288 ST* 04 289 ST* 05 290 X<> Z 291 DEG 292 END |
( 370 bytes / SIZE 019 )
STACK | INPUTS | OUTPUTS |
Z |
/ |
R |
Y |
/ |
P |
X |
N |
T |
Where N = number of subintervals , T =
Age of the Universe in Gigayears ,
P = Period of the Universe in
Gigayears , R = radius of the Universe
in Gigalightyears
Example: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = -0.1 , (Omega)lambda = -0.003 , (Omega) rad = -0.001
71 STO 00
-0.1 STO 01
-0.003
STO 02
-0.001
STO 03 and if
you choose N = 8 subintervals
RDN P = 796.1455569 Gy
RDN R = 13.10701187 GLy
-We also have: R04 = minimum radius of the Universe = Rmin = 1.306380222 GLy
R05 = maximum radius of the Universe = Rmax = 250.8400402 GLy
Notes:
-The numerical integration is performed with the change of argument: y = A + ( B - A ) Sin2 u where A = Rmin/R & B = Rmax/R
-We must choose: 1-(Omega)tot > 0
-The constant k = -1 ( hyperbolic universes )
-We can also choose the minimum, current & maximum scale factors Rmin R0 Rmax
-The following program employs Carlson elliptic integral RJ
Data Registers: R00 = L = cosmological constant ( Gy-2 )
R01 = Rmin R04 = H0 R06 thru R15: temp
R02 = R0 R05 = q
R03 = Rmax
Flag: F07
Subroutines: /
01 LBL "ACU" 02 DEG 03 STO 03 04 RDN 05 STO 02 06 X<>Y 07 STO 01 08 R^ 09 + 10 STO 04 11 LASTX 12 SF 07 13 XEQ 00 14 ST+ X 15 STO 09 16 RCL 02 17 LBL 00 18 STO 10 19 RCL 03 20 RCL 01 21 - 22 STO 11 23 * 24 RCL 01 25 ST* 11 26 STO 12 27 RCL 04 28 + 29 ST* 12 30 * 31 X<> 11 32 RCL 04 33 RCL 10 |
34 + 35 * 36 X<> 12 37 RCL 03 38 RCL 10 39 - 40 * 41 RCL 10 42 RCL 01 43 - 44 ST/ 11 45 ST/ 12 46 / 47 STO 13 48 RCL 11 49 RCL 03 50 RCL 04 51 * 52 - 53 STO 14 54 STO 15 55 CLX 56 STO 00 57 STO 08 58 SIGN 59 STO 07 60 LBL 01 61 RCL 11 62 SQRT 63 ENTER 64 STO 05 65 RCL 12 66 SQRT |
67 ST* Z 68 STO 06 69 RCL 13 70 SQRT 71 ST* T 72 ST* 06 73 + 74 ST* 05 75 + 76 RCL 14 77 * 78 + 79 X^2 80 RCL 14 81 RCL 05 82 RCL 06 83 + 84 ST+ 11 85 ST+ 12 86 ST+ 13 87 RCL 14 88 + 89 STO 14 90 X^2 91 * 92 X=Y? 93 GTO 02 94 - 95 STO 05 96 X<>Y 97 / 98 X<0? 99 GTO 03 |
100 SQRT 101 ENTER 102 ST+ Y 103 SIGN 104 LASTX 105 - 106 / 107 LN1+X 108 2 109 / 110 GTO 04 111 LBL 02 112 SQRT 113 1/X 114 GTO 05 115 LBL 03 116 CHS 117 SQRT 118 ATAN 119 D-R 120 LBL 04 121 RCL 05 122 ABS 123 SQRT 124 / 125 LBL 05 126 RCL 07 127 * 128 ST+ 00 129 4 130 ST/ 07 131 ST/ 11 132 ST/ 12 |
133 ST/ 13 134 ST/ 14 135 RCL 08 136 RCL 07 137 RCL 11 138 RCL 12 139 + 140 RCL 13 141 + 142 RCL 14 143 ST+ X 144 + 145 5 146 / 147 ENTER 148 SQRT 149 * 150 / 151 RCL 00 152 3 153 * 154 + 155 STO 08 156 X>Y? 157 GTO 01 158 RCL 01 159 * 160 RCL 03 161 * 162 RCL 04 163 * 164 3 165 / |
166 CHS 167 RCL 15 168 RCL 01 169 RCL 10 170 * 171 / 172 SQRT 173 1/X 174 FS? 07 175 SIGN 176 ASIN 177 D-R 178 + 179 ST+ X 180 FS?C 07 181 RTN 182 RCL 03 183 RCL 04 184 * 185 RCL 01 186 X^2 187 + 188 STO 00 189 SQRT 190 ST* 09 191 * 192 3 193 RCL 00 194 / 195 CHS 196 STO 00 197 RCL 02 198 RCL 01 199 - |
200 * 201 RCL 02 202 RCL 03 203 - 204 * 205 RCL 02 206 RCL 04 207 + 208 * 209 3 210 RCL 02 211 ST/ Z 212 X^2 213 * 214 / 215 STO 04 216 RCL 02 217 X^2 218 1/X 219 - 220 RCL 00 221 - 222 RCL 04 223 ST+ X 224 / 225 STO 05 226 RCL 04 227 SQRT 228 977.7922214 229 * 230 STO 04 231 RCL 09 232 R^ 233 END |
( 288 bytes / SIZE 016 )
STACK | INPUTS | OUTPUTS |
T | / | q |
Z | Rmin | H0 |
Y | R0 | P |
X | Rmax | T |
Where T = age of the Universe , P = the period , H0 = the current Hubble "constant" and q = the deceleration parameter
Example: Rmin = 1 R0 = 14 Rmax = 314 ( Gigalightyears )
1 ENTER^
14 ENTER^
314 XEQ "AUC" >>>> T = 15.49057984 gigayears ---Execution time = 58s---
RDN P = 993.8651299 gigayears
RDN H0 = 67.22990237 km/s/Mpc
RDN q = -0.036404801
and R00 = L = -0.000030330 Gy-2
-We can use M-Code routines RF & RJ
-I've also remarked that the change of variable: x = (a.y+r) / (y+1) yields
§ar x dx / sqrt [ x (b-x) (x+c) (x+d) ] = §0+infinity sqrt(r-a) sqrt (a.y+r) / (y+1) / sqrt [ ((b-a).y + (b-r)) ((a+c).y + (r+c)) ] dy
= ... = 2 SQRT [ (r-a) / a / (b-a) / (a+c) ] { a RF [ (b-r)/(b-a) , (r+c)/(a+c) , r/a ] + [(r-a)/3] RJ [ (b-r)/(b-a) , (r+c)/(a+c) , r/a ; 1 ] }
and with this formula, the program becomes slightly shorter.
Data Registers: R00 = L = cosmological constant ( Gy-2 )
R01 = Rmin R04 = H0 R10 = P R06 thru R11: temp
R02 = R0 R05 = q
R03 = Rmax
Flag: F07
Subroutines: M-Code routines: RF & RJ ( cf "Carlson Elliptic Integrals for the HP41" )
01 LBL "AUM" 02 STO 03 03 STO 04 04 STO 05 05 RDN 06 STO 02 07 X<>Y 08 STO 01 09 ST- 04 10 ST+ 05 11 RCL 05 12 + 13 STO 09 14 RCL 03 15 SF 07 16 XEQ 01 17 ST+ X 18 STO 10 19 RCL 02 |
20 LBL 01 21 STO 00 22 RCL 01 23 / 24 STO 11 25 RCL 03 26 RCL 00 27 - 28 RCL 04 29 / 30 STO 06 31 RCL 00 32 RCL 05 33 + 34 RCL 09 35 / 36 STO 07 37 RF 38 RCL 01 |
39 * 40 STO 08 41 SIGN 42 RCL 06 43 RCL 07 44 RCL 11 45 RJ 46 RCL 00 47 RCL 01 48 - 49 STO 06 50 * 51 3 52 / 53 RCL 08 54 + 55 RCL 06 56 RCL 01 57 / |
58 RCL 04 59 / 60 RCL 09 61 / 62 SQRT 63 ST+ X 64 * 65 FS?C 07 66 RTN 67 RCL 03 68 RCL 05 69 * 70 RCL 01 71 X^2 72 + 73 STO 00 74 SQRT 75 ST* 10 76 * |
77 3 78 RCL 00 79 / 80 CHS 81 STO 00 82 RCL 02 83 ST+ 05 84 RCL 01 85 - 86 * 87 RCL 02 88 RCL 03 89 - 90 * 91 RCL 05 92 * 93 RCL 02 94 3 95 ST/ Z 96 Y^X |
97 / 98 STO 04 99 RCL 02 100 X^2 101 1/X 102 - 103 RCL 00 104 - 105 RCL 04 106 ST+ X 107 / 108 STO 05 109 RCL 04 110 SQRT 111 977.7922214 112 * 113 STO 04 114 RCL 10 115 R^ 116 END |
( 148 bytes / SIZE 012 )
STACK | INPUTS | OUTPUTS |
T | / | q |
Z | Rmin | H0 |
Y | R0 | P |
X | Rmax | T |
Where T = age of the Universe , P = the period , H0 = the current Hubble "constant" and q = the deceleration parameter
Example: Rmin = 1 R0 = 14 Rmax = 314 ( Gigalightyears )
1 ENTER^
14 ENTER^
314 XEQ "AUC" >>>> T = 15.49057983 gigayears ---Execution time = 42s---
RDN P = 993.8651299 gigayears
RDN H0 = 67.22990236 km/s/Mpc
RDN q = -0.036404801
and R00 = L = -0.000030330 Gy-2
Note:
-Cf also "Cyclic Universes for the HP41"
5°) More General Universes
a) Cosmological Constant = 0
-This program uses Einstein's equation with Lambda = 0 & k = +1 ( spherical space )
-You choose Rmin R0 Rmax and "AUL" returns the age of the Universe T, the period P, the current Hubble "constant" H0 and the deceleration parameter q
Data Registers: R00: temp R01 = Rmin R02 = R0 R03 = Rmax R04 = T
Flags: /
Subroutines: /
01 LBL "AUL" 02 DEG 03 STO 00 04 STO 03 05 X<>Y 06 ENTER 07 STO 02 08 ST- Z 09 R^ |
10 ST+ 00 11 STO 01 12 - 13 STO 04 14 R^ 15 ST* 04 16 - 17 ST* Y 18 RCL 01 |
19 RCL 03 20 - 21 / 22 ACOS 23 D-R 24 RCL 00 25 * 26 2 27 ST/ Z |
28 / 29 X<> 04 30 ST+ Y 31 ST/ Y 32 SQRT 33 ST- 04 34 977.7922214 35 * |
36 RCL 02 37 X^2 38 / 39 RCL 00 40 PI 41 * 42 RCL 04 43 END |
( 70 bytes / SIZE 005 )
STACK | INPUTS | OUTPUTS |
T | / | q |
Z | Rmin | H0 |
Y | R0 | P |
X | Rmax | T |
Where T = age of the Universe , P = the period , H0 = the current Hubble "constant" and q = the deceleration parameter
Example1: Rmin = 2 R0 = 41 Rmax = 257 ( Gygalightyears )
2 ENTER^
41 ENTER^
257 XEQ "AUL" >>>> T = 12.28422136 gigayears ---Execution time = 2.5s---
RDN P = 813.6724974 gigayears
RDN H0 = 53.38731059 km/s/Mpc
RDN q = 0.569266382
Example2: Rmin = 3 R0 = 37 Rmax = 300 ( Gygalightyears )
3 ENTER^
37 ENTER^
300 XEQ "AUL" >>>> T = 10.02097732 gigayears
RDN P = 951.9025742 gigayears
RDN H0 = 67.53990768 km/s/Mpc
RDN q = 0.526224558
Example3: Rmin = 10 R0 = 123 Rmax = 9876 ( Gygalightyears )
10 ENTER^
123 ENTER^
9876 XEQ "AUL" >>>> T = 10.23464300 gigayears
RDN P = 31057.78498 gigayears
RDN H0 = 67.84919334 km/s/Mpc
RDN q = 0.462057965
Note:
-We can also compute: (Omega)mat & (Omega)rad
Data Registers: R00: temp
R01 = Rmin R04 = (Omega)mat R06 = T
R02 = R0 R05 = (Omega)rad
R03 = Rmax
Flags: /
Subroutines: /
01 LBL "AUL" 02 DEG 03 STO 00 04 STO 03 05 STO 05 06 X<>Y 07 ENTER 08 STO 02 09 ST- Z 10 R^ |
11 ST+ 00 12 STO 01 13 CHS 14 ST* 05 15 + 16 STO 06 17 R^ 18 ST* 06 19 - 20 ST* Y |
21 RCL 01 22 RCL 03 23 - 24 / 25 ACOS 26 D-R 27 RCL 00 28 STO 04 29 * 30 2 |
31 ST/ Z 32 / 33 X<> 06 34 ST+ Y 35 ST/ Y 36 ST/ 04 37 ST/ 05 38 SQRT 39 ST- 06 40 RCL 02 |
41 ST* 04 42 X^2 43 / 44 977.7922214 45 * 46 RCL 00 47 PI 48 * 49 RCL 06 50 END |
( 81 bytes / SIZE 007 )
STACK | INPUTS | OUTPUTS |
T | / | q |
Z | Rmin | H0 |
Y | R0 | P |
X | Rmax | T |
Where T = age of the Universe , P = the period , H0 = the current Hubble "constant" and q = the deceleration parameter
Example: Rmin = 2 R0 = 41 Rmax = 257 ( Gygalightyears )
2 ENTER^
41 ENTER^
257 XEQ "AUL" >>>> T = 12.28422136 gigayears ---Execution time = 3s---
RDN P = 813.6724974 gigayears
RDN H0 = 53.38731059 km/s/Mpc
RDN q = 0.569266382
and R04 = (Omega)mat = 1.260565052
R05 = (Omega)rad = -0.061016144
Note:
-The following program is more general:
-You choose the parameters Hubble "constant" , (Omega)mat & (Omega) rad
-Since (Omega) lambda = 0 , we can calculate the integrals with elementary functions ( cf reference [2] )
Data Registers: R00 = H0
R01 = (Omega)mat R03 = T R05 = Rmin R07 = Rmax R09-R10-R11: temp
R02 = (Omega)rad R04 = P R06 = R0 R08 = k
Flags: F24
Subroutines: /
-Lines 27-78-102 are three-byte GTOs
01 LBL "AUL" 02 DEG 03 STO 02 04 X<>Y 05 STO 01 06 + 07 X<>Y 08 STO 00 09 SIGN 10 X<>Y 11 - 12 STO 06 13 90 14 TAN 15 STO 07 16 CLX 17 STO 04 18 STO 05 19 X<>Y 20 X#0? 21 GTO 03 22 RCL 01 23 X#0? 24 GTO 01 25 2 26 1/X 27 GTO 06 28 LBL 01 29 CHS 30 X<=0? 31 GTO 02 32 RCL 02 33 X<>Y 34 / 35 STO 07 36 RCL 02 37 ENTER |
38 SQRT 39 * 40 8 41 * 42 RCL 01 43 X^2 44 3 45 * 46 / 47 STO 04 48 LBL 02 49 1 50 RCL 02 51 RCL 01 52 CHS 53 / 54 X<=Y? 55 X<0? 56 CLX 57 STO 05 58 RCL 01 59 * 60 RCL 02 61 + 62 SQRT 63 RCL 02 64 LASTX 65 3 66 / 67 - 68 * 69 RCL 02 70 - 71 3 72 1/X 73 + 74 ST+ X |
75 RCL 01 76 X^2 77 / 78 GTO 06 79 LBL 03 80 ABS 81 SQRT 82 ST+ X 83 STO 09 84 RCL 02 85 ABS 86 SQRT 87 STO 08 88 RCL 01 89 CHS 90 RCL 06 91 ST+ X 92 STO 10 93 / 94 ENTER 95 X^2 96 RCL 02 97 RCL 06 98 / 99 STO T 100 - 101 X<0? 102 GTO 05 103 SQRT 104 RCL Y 105 SIGN 106 * 107 + 108 X#0? 109 ST/ Y 110 X>Y? 111 X<>Y |
112 STO 11 113 X<0? 114 CLX 115 STO 05 116 1 117 X<Y? 118 GTO 04 119 X<>Y 120 RDN 121 X<Y? 122 GTO 00 123 X<>Y 124 X>0? 125 STO 05 126 GTO 03 127 LBL 00 128 X<>Y 129 STO 07 130 LBL 03 131 RCL 05 132 0 133 X#Y? 134 STO 08 135 RCL 06 136 X>0? 137 GTO 05 138 RCL 05 139 RCL 11 140 - 141 RCL 05 142 + 143 RCL 07 144 ST- Y 145 RCL 11 146 - 147 STO 10 148 / |
149 ASIN 150 STO 03 151 ST+ X 152 D-R 153 PI 154 - 155 RCL 01 156 * 157 RCL 09 158 / 159 RCL 08 160 ST+ X 161 - 162 STO 04 163 RCL 07 164 RCL 11 165 + 166 2 167 - 168 RCL 10 169 / 170 ASIN 171 RCL 03 172 + 173 D-R 174 RCL 01 175 * 176 RCL 09 177 / 178 1 179 + 180 RCL 08 181 - 182 RCL 06 183 ST/ 04 184 / 185 GTO 06 186 LBL 04 |
187 RCL 08 188 RCL 09 189 * 190 RCL 10 191 RCL 11 192 STO 07 193 * 194 RCL 01 195 ST+ Z 196 + 197 / 198 LN 199 RCL 01 200 * 201 RCL 09 202 / 203 RCL 08 204 - 205 RCL 06 206 / 207 ST+ X 208 STO 04 209 CLX 210 STO 05 211 LBL 05 212 1 213 RCL 05 214 RCL 10 215 * 216 RCL 01 217 + 218 RCL 08 219 ST- Z 220 RCL 09 221 * 222 + 223 RCL 01 224 RCL 10 |
225 + 226 RCL 09 227 + 228 / 229 LN 230 RCL 01 231 * 232 RCL 09 233 / 234 + 235 RCL 06 236 / 237 LBL 06 238 STO 03 239 RCL 06 240 CHS 241 X#0? 242 SIGN 243 STO 08 244 977.7922214 245 RCL 00 246 / 247 ST* 03 248 ST* 04 249 RCL 06 250 X=0? 251 SIGN 252 ABS 253 SQRT 254 / 255 SF 24 256 ST* 05 257 STO 06 258 ST* 07 259 RCL 04 260 RCL 03 261 CF 24 262 END |
( 314 bytes / SIZE 012 )
STACK | INPUTS | OUTPUTS |
T |
/ |
k |
Z |
H0 |
R0 |
Y |
(Omega)mat |
P |
X |
(Omega)rad |
T |
Where T = age of the Universe ( or the time since the last minimum scale factor ) P = period ( or 0 if no period ) R0 = current scale factor
Example1: H0 = 68 km/s/Mpc (Omega)mat = 1.4 (Omega)rad = -0.2
68 ENTER^
1.4 ENTER^
-0.2 XEQ "AUL" >>>> T = 10.22400044 Gy ---Execution time = 5s---
RDN P = 707.0833001 Gy
RDN R0 = 32.15308639 Gly
RDN k = +1 ( spherical space )
and R05 = 4.691072085 Gly = minimum radius of this Universe
R07 = 220.3805326 Gly = maximum radius of this Universe.
Example2: H0 = 68 km/s/Mpc (Omega)mat = 0.2 (Omega)rad = 0.1
68 ENTER^
0.2 ENTER^
0.1 XEQ "AUL" >>>> T = 10.35899203 Gy
RDN P = 0.000000000 Gy ( no periodic )
RDN R0 = 17.18654760 Gly
RDN k = -1 ( hyperbolic space )
and R05 = 0.000000000 Gly = minimum radius of this Universe
R07 = 9.9999999 E99 Gly = maximum radius of this Universe = infinity
Example3: H0 = 68 km/s/Mpc (Omega)mat = 1.2 (Omega)rad = -2
68 ENTER^
1.2 ENTER^
-2 XEQ "AUL" >>>> T = 5.732772984 Gy
RDN P = 0.000000000 Gy ( no periodic )
RDN R0 = 10.71769547 Gly
RDN k = -1 ( hyperbolic space )
and R05 = 8.276293007 Gly = minimum radius of this Universe
R07 = 9.9999999 E99 Gly = maximum radius of this Universe = infinity
Example4: H0 = 68 km/s/Mpc (Omega)mat = 1.2 (Omega)rad = -0.2
68 ENTER^
1.2 ENTER^
-0.2 XEQ "AUL" >>>> T = 10.65133139 Gy
RDN P = 0.000000000 Gy ( no periodic )
RDN R0 = 14.37929737 Gly
RDN k = 0 ( Euclidean space )
and R05 = 2.396549562 Gly = minimum radius of this Universe
R07 = 9.9999999 E99 Gly = maximum radius of this Universe = infinity
Example5: H0 = 68 km/s/Mpc (Omega)mat = 1 (Omega)rad = 0
68 ENTER^
1 ENTER^
0 XEQ "AUL" >>>> T = 9.586198246 Gy
RDN P = 0.000000000 Gy ( no periodic )
RDN R0 = 14.37929737 Gly
RDN k = 0 ( Euclidean space )
and R05 = 0.000000000 Gly = minimum radius of this Universe
R07 = 9.9999999 E99 Gly = maximum radius of this Universe = infinity
Example6: H0 = 68 km/s/Mpc (Omega)mat = 0.4 (Omega)rad = 0.6
68 ENTER^
0.4 ENTER^
0.6 XEQ "AUL" >>>> T = 7.759788005 Gy
RDN P = 0.000000000 Gy ( no periodic )
RDN R0 = 14.37929737 Gly
RDN k = 0 ( Euclidean space )
and R05 = 0.000000000 Gly = minimum radius of this Universe
R07 = 9.9999999 E99 Gly = maximum radius of this Universe = infinity
Example7: H0 = 68 km/s/Mpc (Omega)mat = 0 (Omega)rad = 1
68 ENTER^
0 ENTER^
1 XEQ "AUL" >>>> T = 7.189648685 Gy
RDN P = 0.000000000 Gy ( no periodic )
RDN R0 = 14.37929737 Gly
RDN k = 0 ( Euclidean space )
and R05 = 0.000000000 Gly = minimum radius of this Universe
R07 = 9.9999999 E99 Gly = maximum radius of this Universe = infinity
Example8: H0 = 68 km/s/Mpc (Omega)mat = -0.4 (Omega)rad = 1.4
68 ENTER^
-0.4 ENTER^
1.4 XEQ "AUL" >>>> T = 6.770532843 Gy
RDN P = 396.9889956 Gy
RDN R0 = 14.37929737 Gly
RDN k = 0 ( Euclidean space )
and R05 = 0.000000000 Gly = minimum radius of this Universe
R07 = 50.32754080 Gly = maximum radius of this Universe
Example9: H0 = 68 km/s/Mpc (Omega)mat = -0.4 (Omega)rad = 1.3999
68 ENTER^
-0.4 ENTER^
1.3999 XEQ "AUL" >>>> T = 6.770851649 Gy
RDN P = 397.7828431 Gy
RDN R0 = 1437.929737 Gly
RDN k = -1 ( hyperbolic space )
and R05 = 0 Gly = minimum radius of this Universe
R07 = 5036.805349 Gly = maximum radius of this Universe.
Notes:
-In examples 1 to 8, the results have a good precision.
-But in example 9, free42 gives T = 6.770673328 & P = 397.7820792
-When 1 - (Omega)mat - (Omega)rad is very small but # 0, this program does not give accurate results with an HP41 ( the outputs T & P may even be meaningless... )
-We can make a much smaller program if we only use:
(Omega)mat > 0 (Omega)rad > 0 with 1 - (Omega)mat - (Omega)rad > 0
Data Registers: R00 to R03: temp
Flags: /
Subroutines: /
01 LBL "AUL" 02 STO 02 03 X<>Y 04 STO 01 05 2 06 / 07 + 08 X<>Y 09 977.7922214 10 / |
11 STO 00 12 SIGN 13 RCL 01 14 - 15 RCL 02 16 - 17 1/X 18 STO 03 19 ST* 02 20 RCL 01 |
21 * 22 2 23 / 24 STO 01 25 RCL 02 26 SQRT 27 STO 02 28 X<>Y 29 ST+ Y 30 1 |
31 + 32 RCL 03 33 SQRT 34 STO 03 35 + 36 / 37 LN 38 RCL 01 39 * 40 RCL 02 |
41 - 42 RCL 03 43 ST+ Y 44 STO Z 45 * 46 RCL 00 47 ST/ Z 48 / 49 END |
( 72 bytes / SIZE 004 )
STACK | INPUTS | OUTPUTS |
Z |
H0 |
q |
Y |
(Omega)mat |
R0 |
X |
(Omega)rad |
T |
Where T = age of the Universe R0 = current scale factor q = deceleration parameter
Example1: H0 = 68 km/s/Mpc (Omega)mat = 0.2 (Omega)rad = 0.1
68 ENTER^
0.2 ENTER^
0.1 XEQ "AUL" >>>> T = 10.35899205 Gy ---Execution time = 2s---
RDN R0 = 17.18654761 Gly
RDN q = 0.2
Example2: H0 = 71 km/s/Mpc (Omega)mat = 0.044 (Omega)rad = 0.000049
71 ENTER^
0.044 ENTER^
0.000049 XEQ "AUL" >>>> T = 12.93861786 Gy
RDN R0 = 14.08543985 Gly
RDN q = 0.022049
Note:
-Always k = -1 ( hyperbolic space )
b) Cosmological Constant # 0
-This program employs Romberg integration.
-The precision is controlled by the display format ( lines 395...398 ).
Data Registers: R00 = H0
R01 = (Omega)mat R04 = T R06 = Rmin R08 = R0 R10.....: temp
R02 = (Omega)lambda R05 = P R07 = Rmax R09 = k
R03 = (Omega)rad
Flags: F08-F09-F10-F24
Subroutines: /
-Lines 152-230-239-248 are three-byte GTOs
01 LBL "AUM" 02 CF 08 03 CF 09 04 CF 10 05 R^ 06 STO 00 07 SIGN 08 X<>Y 09 STO 03 10 STO 05 11 - 12 X<>Y 13 STO 02 14 - 15 X<>Y 16 STO 01 17 STO 04 18 - 19 STO 10 20 RCL 02 21 ST/ 04 22 ST/ 05 23 ST/ 10 24 CLX 25 STO 06 26 STO 07 27 LBL 01 28 RCL 06 29 X^2 30 STO 11 31 RCL 10 32 + 33 STO 13 34 RCL 07 35 ST+ X 36 STO 12 37 - 38 STO 08 39 RCL 04 40 RCL 06 41 RCL 08 42 * 43 - 44 STO 09 45 * 46 RCL 07 47 RCL 13 48 - 49 RCL 07 50 * 51 RCL 05 52 + 53 STO 14 54 RCL 06 55 ST+ X 56 STO 15 57 * 58 + 59 RCL 10 60 RCL 11 61 3 62 * 63 + 64 RCL 12 65 - 66 ST* 08 67 RCL 14 68 * 69 RCL 06 70 RCL 09 71 * 72 RCL 12 |
73 * 74 - 75 RCL 07 76 RCL 15 77 X^2 78 * 79 RCL 08 80 + 81 ST/ Z 82 / 83 ST+ 07 84 X<>Y 85 ST+ 06 86 R-P 87 VIEW X 88 E-8 89 X<Y? 90 GTO 01 91 RCL 06 92 CHS 93 STO 08 94 X^2 95 RCL 10 96 RCL 07 97 - 98 + 99 STO 09 100 RCL 07 101 RCL 06 102 2 103 / 104 CHS 105 ENTER 106 X^2 107 RCL 07 108 - 109 CLD 110 X<0? 111 SF 09 112 X<0? 113 GTO 03 114 SQRT 115 RCL Y 116 SIGN 117 * 118 + 119 X#0? 120 ST/ Y 121 STO 06 122 X<>Y 123 STO 07 124 LBL 03 125 RCL 09 126 RCL 08 127 2 128 / 129 CHS 130 ENTER 131 X^2 132 RCL 09 133 - 134 X<0? 135 SF 10 136 X<0? 137 GTO 07 138 SQRT 139 RCL Y 140 SIGN 141 * 142 + 143 X#0? 144 ST/ Y |
145 STO 08 146 X<>Y 147 STO 09 148 LBL 07 149 FS? 09 150 FC? 10 151 FS? 30 152 GTO 13 153 FC? 09 154 GTO 03 155 RCL 08 156 X<> 06 157 STO 08 158 RCL 09 159 X<> 07 160 STO 09 161 LBL 03 162 FC?C 10 163 FS? 09 164 GTO 04 165 RCL 06 166 RCL 07 167 X>Y? 168 X<>Y 169 RCL 08 170 X>Y? 171 X<>Y 172 RCL 09 173 X>Y? 174 X<>Y 175 STO 06 176 RDN 177 X<Y? 178 X<>Y 179 RDN 180 X>Y? 181 X<>Y 182 STO 07 183 X<> T 184 X<Y? 185 X<>Y 186 STO 09 187 X<>Y 188 STO 08 189 1 190 X>Y? 191 GTO 03 192 RCL 07 193 X>Y? 194 GTO 11 195 X<> 06 196 X<> 08 197 STO 07 198 GTO 11 199 LBL 03 200 RCL 08 201 X<> 06 202 STO 08 203 RCL 09 204 X<> 07 205 STO 09 206 LBL 11 207 RCL 08 208 RCL 09 209 + 210 CHS 211 X<> 08 212 ST* 09 213 GTO 07 214 LBL 04 215 RCL 06 216 RCL 07 |
217 X>Y? 218 X<>Y 219 STO 06 220 X<>Y 221 STO 07 222 CF 09 223 LBL 07 224 RCL 06 225 1 226 X<Y? 227 GTO 03 228 RCL 07 229 X<Y? 230 GTO 04 231 RCL 06 232 ST- Z 233 - 234 STO 05 235 / 236 SQRT 237 RAD 238 ASIN 239 GTO 14 240 LBL 03 241 SF 08 242 RCL 06 243 1 244 - 245 SQRT 246 RCL 06 247 SQRT 248 GTO 12 249 LBL 00 250 FS? 08 251 GTO 11 252 FS? 09 253 GTO 09 254 FS? 10 255 GTO 08 256 SIN 257 X^2 258 RCL 05 259 * 260 RCL 06 261 + 262 ENTER 263 STO Z 264 RCL 08 265 + 266 * 267 RCL 09 268 + 269 SQRT 270 / 271 RTN 272 LBL 08 273 X^2 274 RCL 07 275 + 276 ENTER 277 STO Z 278 RCL 08 279 + 280 * 281 RCL 09 282 + 283 X<>Y 284 RCL 06 285 - 286 * 287 SQRT 288 / |
289 RTN 290 LBL 09 291 ENTER 292 ENTER 293 X^2 294 RCL 10 295 + 296 * 297 RCL 04 298 + 299 * 300 RCL 05 301 + 302 SQRT 303 / 304 RTN 305 LBL 11 306 X^2 307 RCL 06 308 X<>Y 309 - 310 ENTER 311 STO Z 312 RCL 08 313 + 314 * 315 RCL 09 316 + 317 RCL 07 318 R^ 319 - 320 * 321 SQRT 322 / 323 CHS 324 RTN 325 LBL 10 326 STO 11 327 X<>Y 328 STO 12 329 STO 13 330 XEQ 00 331 STO 15 332 RCL 11 333 ST- 13 334 XEQ 00 335 RCL 15 336 + 337 2 338 / 339 STO 15 340 RCL 13 341 * 342 STO 20 343 20 344 STO 19 345 SIGN 346 STO 17 347 LBL 02 348 RCL 17 349 STO 16 350 RCL 11 351 RCL 13 352 2 353 / 354 + 355 LBL 05 356 STO 14 357 XEQ 00 358 ST+ 15 359 RCL 13 360 RCL 14 361 + |
362 DSE 16 363 GTO 05 364 2 365 ST/ 13 366 ST* 17 367 X^2 368 STO 18 369 RCL 19 370 INT 371 E3 372 / 373 20 374 + 375 STO 19 376 RCL 13 377 RCL 15 378 * 379 LBL 06 380 ENTER 381 ENTER 382 X<> IND 19 383 STO 14 384 - 385 RCL 18 386 4 387 ST* 18 388 SIGN 389 - 390 / 391 + 392 ISG 19 393 GTO 06 394 STO IND 19 395 VIEW X 396 RND 397 RCL 14 398 RND 399 X#Y? 400 GTO 02 401 RCL IND 19 402 RTN 403 LBL 04 404 - 405 SQRT 406 RCL 07 407 CHS 408 X<0? 409 CLX 410 SF 10 411 SQRT 412 XEQ 10 413 ST+ X 414 STO 04 415 RCL 07 416 STO 06 417 CLX 418 STO 07 419 GTO 03 420 LBL 13 421 CLX 422 SIGN 423 LASTX 424 XEQ 10 425 STO 04 426 CLX 427 STO 07 428 GTO 03 429 LBL 12 430 XEQ 10 431 STO 04 432 CLST 433 RCL 12 434 XEQ 10 |
435 RCL 06 436 STO 07 437 CLX 438 STO 06 439 X<>Y 440 GTO 12 441 LBL 14 442 RCL 06 443 RCL 06 444 RCL 07 445 - 446 / 447 X<0? 448 CLX 449 SQRT 450 ASIN 451 XEQ 10 452 STO 04 453 SIGN 454 ASIN 455 RCL 12 456 XEQ 10 457 LBL 12 458 RCL 04 459 ST+ 04 460 + 461 4 462 * 463 LBL 03 464 STO 05 465 RCL 06 466 X<0? 467 CLX 468 STO 06 469 DEG 470 90 471 TAN 472 RCL 07 473 X<=0? 474 X<>Y 475 STO 07 476 SF 24 477 RCL 02 478 ABS 479 SQRT 480 ST/ 04 481 ST/ 05 482 RCL 02 483 RCL 10 484 * 485 STO 14 486 CHS 487 X#0? 488 SIGN 489 STO 09 490 977.7922214 491 RCL 00 492 / 493 ST* 04 494 ST* 05 495 RCL 14 496 ABS 497 SQRT 498 X=0? 499 SIGN 500 / 501 ST* 06 502 ST* 07 503 STO 08 504 RCL 05 505 RCL 04 506 CLD 507 END |
( 649 bytes / SIZE 020+??? )
STACK | INPUTS | OUTPUTS |
T |
H0 > 0 |
k |
Z |
(Omega) mat |
R0 |
Y |
(Omega)lambda |
P |
X |
(Omega)rad |
T |
T = Age of the Universe in Gigayears ,
k = +1 , 0
, -1 = spherical, euclidean , hyperbolic
Universes
P = Period
of the Universe in Gigayears , R0
= current scale factor of the Universe in Gigalightyears
Example1: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = -0.1 , (Omega)lambda = -0.003 , (Omega) rad = -0.001
FIX 771 ENTER^
-0.1 ENTER^
-0.003 ENTER^
-0.001 XEQ "AUM" >>>> T = 14.61256011 ---Execution time = 2m52s---
RDN P = 796.1455562
RDN R0 = 13.10701187
RDN k = -1 ( hyperbolic space )
-We also have in R06 & R07
Rmin = 1.306380222
Rmax = 250.8400402
Example2: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = 0.044 , (Omega)lambda = 0.521 , (Omega) rad = 0.000049 ( our Universe ? )
FIX 771 ENTER^
0.044 ENTER^
0.521 ENTER^
0.000049 XEQ "AUM" >>>> T = 15.60221461 ---Execution time = 2m37s---
RDN P = 0 ( no periodic universe )
RDN R0 = 20.88180628
RDN k = -1
Rmin = 0
Rmax = 9.999999999 E99 = +infinity
Example3: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = 0.271 , (Omega)lambda = 0.732 , (Omega) rad = 0.000049 ( our Universe ? )
FIX 771 ENTER^
0.271 ENTER^
0.732 ENTER^
0.000049 XEQ "AUM" >>>> T = 13.66788682 ---Execution time = 2m31s---
RDN P = 0 ( no periodic universe )
RDN R0 = 249.4075046
RDN k = +1 ( spherical space )
Rmin = 0
Rmax = 9.999999999 E99 = +infinity
Example4: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = -0.6 , (Omega)lambda = 0.4 , (Omega) rad = 0.1
FIX 771 ENTER^
-0.6 ENTER^
0.4 ENTER^
0.1 XEQ "AUM" >>>> T = 17.27498133 ---Execution time = 4m13s---
RDN P = 0 ( no periodic universe )
RDN R0 = 13.13082118
RDN k = -1 ( hyperbolic space )
Rmin = 0
Rmax = 9.999999999 E99 = +infinity
Example5: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = 0.01 , (Omega)lambda = -0.4 , (Omega) rad = 0.01
FIX 771 ENTER^
0.01 ENTER^
-0.4 ENTER^
0.01 XEQ "AUM" >>>> T = 11.30457454 ---Execution time = 7m18s---
RDN P = 66.21313843
RDN R0 = 11.72326781
RDN k = -1 ( hyperbolic space )
Rmin = 0
Rmax = 21.83998798
Example6: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = -0.4 , (Omega)lambda = +0.001 , (Omega) rad = 1.4
FIX 771 ENTER^
-0.4 ENTER^
0.001 ENTER^
1.4 XEQ "AUM" >>>> T = 6.484937796 ---Execution time = 2m32s---
RDN P = 900.0920456
RDN R0 = 435.5000702
RDN k = +1 ( spherical space )
Rmin = 0
Rmax = 1889.773264
Notes:
-We use Bairstow method ( LBL 01 ) to factorize the quartic polynomial before finding its roots.
-Romberg method = LBL 10
-FIX 9 would often produce infinite loops
-This program also works if (Omega)mat = 0 , but in this case, "AUR" listed in paragraph 2°) is much faster !
-It doesn't work if (Omega)lambda = 1 and (Omega)mat = 0 = (Omega) rad but in this case, T = +infinity , Rmin = 0 and Rmax = +infinity ( de Sitter model )
-We could add a few lines to take this case into account...
-We can save several bytes if we use Gauss-Legendre 2-point formula.
-The first estimations are computed with 15 subintervals for T and 55 subintervals for P ( lines 414 & 415 )
-After these results, you can use other values N1 for T & N2 for P, for instance, with 30 & 100
30 ENTER^
100 XEQ 10
Data Registers: R00 = H0
R01 = (Omega)mat R21 = T R23 = Rmin R25 = R0
R02 = (Omega)lambda R22 = P R24 = Rmax R26 = k
R03 = (Omega)rad
Flags: F08-F09-F10-F24
Subroutines: /
-Lines 152-230-239-250 are three-byte GTOs
01 LBL "AUM" 02 CF 08 03 CF 09 04 CF 10 05 R^ 06 STO 00 07 SIGN 08 X<>Y 09 STO 03 10 STO 05 11 - 12 X<>Y 13 STO 02 14 - 15 X<>Y 16 STO 01 17 STO 04 18 - 19 STO 10 20 RCL 02 21 ST/ 04 22 ST/ 05 23 ST/ 10 24 CLX 25 STO 06 26 STO 07 27 LBL 01 28 RCL 06 29 X^2 30 STO 11 31 RCL 10 32 + 33 STO 13 34 RCL 07 35 ST+ X 36 STO 12 37 - 38 STO 08 39 RCL 04 40 RCL 06 41 RCL 08 42 * 43 - 44 STO 09 45 * 46 RCL 07 47 RCL 13 48 - 49 RCL 07 50 * 51 RCL 05 52 + 53 STO 14 54 RCL 06 55 ST+ X 56 STO 15 57 * 58 + 59 RCL 10 60 RCL 11 61 3 62 * 63 + 64 RCL 12 65 - 66 ST* 08 67 RCL 14 68 * |
69 RCL 06 70 RCL 09 71 * 72 RCL 12 73 * 74 - 75 RCL 07 76 RCL 15 77 X^2 78 * 79 RCL 08 80 + 81 ST/ Z 82 / 83 ST+ 07 84 X<>Y 85 ST+ 06 86 R-P 87 VIEW X 88 E-8 89 X<Y? 90 GTO 01 91 RCL 06 92 CHS 93 STO 08 94 X^2 95 RCL 10 96 RCL 07 97 - 98 + 99 STO 09 100 RCL 07 101 RCL 06 102 2 103 / 104 CHS 105 ENTER 106 X^2 107 RCL 07 108 - 109 CLD 110 X<0? 111 SF 09 112 X<0? 113 GTO 03 114 SQRT 115 RCL Y 116 SIGN 117 * 118 + 119 X#0? 120 ST/ Y 121 STO 06 122 X<>Y 123 STO 07 124 LBL 03 125 RCL 09 126 RCL 08 127 2 128 / 129 CHS 130 ENTER 131 X^2 132 RCL 09 133 - 134 X<0? 135 SF 10 136 X<0? |
137 GTO 07 138 SQRT 139 RCL Y 140 SIGN 141 * 142 + 143 X#0? 144 ST/ Y 145 STO 08 146 X<>Y 147 STO 09 148 LBL 07 149 FS? 09 150 FC? 10 151 FS? 30 152 GTO 13 153 FC? 09 154 GTO 03 155 RCL 08 156 X<> 06 157 STO 08 158 RCL 09 159 X<> 07 160 STO 09 161 LBL 03 162 FC?C 10 163 FS? 09 164 GTO 04 165 RCL 06 166 RCL 07 167 X>Y? 168 X<>Y 169 RCL 08 170 X>Y? 171 X<>Y 172 RCL 09 173 X>Y? 174 X<>Y 175 STO 06 176 RDN 177 X<Y? 178 X<>Y 179 RDN 180 X>Y? 181 X<>Y 182 STO 07 183 X<> T 184 X<Y? 185 X<>Y 186 STO 09 187 X<>Y 188 STO 08 189 1 190 X>Y? 191 GTO 03 192 RCL 07 193 X>Y? 194 GTO 11 195 X<> 06 196 X<> 08 197 STO 07 198 GTO 11 199 LBL 03 200 RCL 08 201 X<> 06 202 STO 08 203 RCL 09 204 X<> 07 |
205 STO 09 206 LBL 11 207 RCL 08 208 RCL 09 209 + 210 CHS 211 X<> 08 212 ST* 09 213 GTO 07 214 LBL 04 215 RCL 06 216 RCL 07 217 X>Y? 218 X<>Y 219 STO 06 220 X<>Y 221 STO 07 222 CF 09 223 LBL 07 224 RCL 06 225 1 226 X<Y? 227 GTO 03 228 RCL 07 229 X<Y? 230 GTO 04 231 RCL 06 232 ST- Z 233 - 234 STO 05 235 / 236 SQRT 237 RAD 238 ASIN 239 GTO 14 240 LBL 03 241 SF 08 242 RCL 06 243 SQRT 244 STO 16 245 LASTX 246 1 247 - 248 SQRT 249 STO 17 250 GTO 12 251 LBL 06 252 STO 12 253 - 254 X<>Y 255 STO 11 256 ST+ 11 257 / 258 STO Y 259 3 260 SQRT 261 / 262 STO 13 263 - 264 STO 14 265 2 266 / 267 ST- 12 268 CLX 269 STO 15 270 LBL 05 271 RCL 12 272 RCL 13 |
273 X<> 14 274 STO 13 275 + 276 STO 12 277 XEQ 00 278 ST+ 15 279 DSE 11 280 GTO 05 281 RCL 13 282 RCL 15 283 * 284 3 285 SQRT 286 * 287 RTN 288 LBL 00 289 FS? 08 290 GTO 11 291 FS? 09 292 GTO 09 293 FS? 10 294 GTO 08 295 SIN 296 X^2 297 RCL 05 298 * 299 RCL 06 300 + 301 ENTER 302 STO Z 303 RCL 08 304 + 305 * 306 RCL 09 307 + 308 SQRT 309 / 310 RTN 311 LBL 08 312 X^2 313 RCL 07 314 + 315 ENTER 316 STO Z 317 RCL 08 318 + 319 * 320 RCL 09 321 + 322 X<>Y 323 RCL 06 324 - 325 * 326 SQRT 327 / 328 RTN 329 LBL 09 330 ENTER 331 ENTER 332 X^2 333 RCL 10 334 + 335 * 336 RCL 04 337 + 338 * 339 RCL 05 340 + |
341 SQRT 342 ST+ X 343 / 344 RTN 345 LBL 11 346 X^2 347 RCL 06 348 X<>Y 349 - 350 ENTER 351 STO Z 352 RCL 08 353 + 354 * 355 RCL 09 356 + 357 RCL 07 358 R^ 359 - 360 * 361 SQRT 362 / 363 CHS 364 RTN 365 LBL 04 366 - 367 SQRT 368 STO 17 369 RCL 07 370 STO 23 371 CHS 372 X<0? 373 CLX 374 SF 10 375 SQRT 376 STO 16 377 CLX 378 STO 24 379 GTO 04 380 LBL 13 381 CLX 382 STO 16 383 STO 24 384 SIGN 385 STO 17 386 RCL 06 387 STO 23 388 GTO 04 389 LBL 12 390 CLX 391 STO 18 392 STO 23 393 RCL 06 394 STO 24 395 GTO 04 396 LBL 14 397 STO 17 398 RCL 06 399 RCL 06 400 STO 23 401 RCL 07 402 STO 24 403 - 404 / 405 X<0? 406 CLX 407 SQRT 408 ASIN 409 STO 16 |
410 SIGN 411 ASIN 412 STO 18 413 LBL 04 414 15 415 55 416 LBL 10 417 RAD 418 STO 20 419 X<>Y 420 STO 19 421 RCL 17 422 RCL 16 423 XEQ 06 424 STO 21 425 CLX 426 FC? 09 427 FS? 10 428 GTO 00 429 RCL 20 430 RCL 18 431 RCL 16 432 XEQ 06 433 ST+ X 434 LBL 00 435 STO 22 436 RCL 23 437 X<0? 438 CLX 439 STO 23 440 DEG 441 90 442 TAN 443 RCL 24 444 X<=0? 445 X<>Y 446 STO 24 447 SF 24 448 RCL 02 449 ABS 450 SQRT 451 ST/ 21 452 ST/ 22 453 RCL 02 454 RCL 10 455 * 456 STO 14 457 CHS 458 X#0? 459 SIGN 460 STO 26 461 977.7922214 462 RCL 00 463 / 464 ST* 21 465 ST* 22 466 RCL 14 467 ABS 468 SQRT 469 X=0? 470 SIGN 471 / 472 ST* 23 473 ST* 24 474 STO 25 475 RCL 22 476 RCL 21 477 CF 24 478 END |
( 631 bytes / SIZE 027 )
STACK | INPUTS | OUTPUTS |
T |
H0 > 0 |
k |
Z |
(Omega) mat |
R0 |
Y |
(Omega)lambda |
P |
X |
(Omega)rad |
T |
T = Age of the Universe in Gigayears ,
k = +1 , 0
, -1 = spherical, euclidean , hyperbolic
Universes
P = Period
of the Universe in Gigayears , R0
= current scale factor of the Universe in Gigalightyears
Example1: Hubble "constant" = 71 km/s/Mpc
, (Omega)mat
= -0.1 , (Omega)lambda
= -0.003 , (Omega)
rad = -0.001
71 ENTER^
-0.1 ENTER^
-0.003 ENTER^
-0.001 XEQ "AUM" >>>> T = 14.61256012 ---Execution time = 3m33s---
RDN P = 796.1455560
RDN R0 = 13.10701187
RDN k = -1 ( hyperbolic space )
-We also have in R23 & R24
Rmin = 1.306380222
Rmax = 250.8400402
Example2: Hubble "constant" = 71 km/s/Mpc
, (Omega)mat
= 0.044 , (Omega)lambda
= 0.521 , (Omega) rad = 0.000049
( our Universe ? )
71 ENTER^
0.044 ENTER^
0.521 ENTER^
0.000049 XEQ "AUM" >>>> T = 15.60221156 ---Execution time = 48s---
RDN P = 0 ( no periodic universe )
RDN R0 = 20.88180628
RDN k = -1
Rmin = 0
Rmax = 9.999999999 E99 = +infinity
-With another number of subintervals to compute T - for instance 30 -
30 ENTER^ ( any other number in X-register since P = 0 ) XEQ 10 >>>> T= 15.60221435
-With N = 60 , it yields: T = 15.60221460
... and so on ...
Note:
-Of course, we can use Carlson elliptic integrals to obtain very accurate results:
Data Registers: R00 = H0
R01 = (Omega)mat R04 = T R06 = Rmin R08 = R0 R10.....: temp
R02 = (Omega)lambda R05 = P R07 = Rmax R09 = k
R03 = (Omega)rad
Flags: F08-F09-F10-F24
Subroutines: ( M-Code routines ) RF RFZ RJ RJZ ( cf "Carlson Elliptic Integrals for the HP41" )
-Lines 156-334 are three-byte GTOs
01 LBL "AUM" 02 CF 08 03 CF 09 04 CF 10 05 R^ 06 STO 00 07 SIGN 08 X<>Y 09 STO 03 10 STO 05 11 - 12 X<>Y 13 STO 02 14 - 15 X<>Y 16 STO 01 17 STO 04 18 - 19 STO 10 20 STO 20 21 RCL 02 22 ST/ 04 23 ST/ 05 24 ST/ 10 25 CLX 26 STO 06 27 STO 07 28 LBL 01 29 RCL 06 30 X^2 31 STO 11 32 RCL 10 33 + 34 STO 13 35 RCL 07 36 ST+ X 37 STO 12 38 - 39 STO 08 40 RCL 04 41 RCL 06 42 RCL 08 43 * 44 - 45 STO 09 46 * 47 RCL 07 48 RCL 13 49 - 50 RCL 07 51 * 52 RCL 05 53 + 54 STO 14 55 RCL 06 56 ST+ X 57 STO 15 58 * 59 + 60 RCL 10 61 RCL 11 62 3 63 * 64 + 65 RCL 12 66 - 67 ST* 08 68 RCL 14 69 * 70 RCL 06 71 RCL 09 72 * 73 RCL 12 74 * 75 - 76 RCL 07 77 RCL 15 78 X^2 79 * 80 RCL 08 81 + 82 ST/ Z 83 / 84 ST+ 07 85 X<>Y 86 ST+ 06 87 R-P 88 VIEW X 89 E-8 90 X<Y? 91 GTO 01 92 RCL 06 93 CHS 94 STO 08 95 X^2 96 RCL 10 97 RCL 07 98 - 99 + 100 STO 09 101 RCL 07 102 RCL 06 103 2 104 / 105 CHS 106 STO 11 107 ENTER 108 X^2 109 RCL 07 110 - 111 STO 12 112 CLD 113 X<0? |
114 SF 09 115 X<0? 116 GTO 02 117 SQRT 118 RCL Y 119 SIGN 120 * 121 + 122 X#0? 123 ST/ Y 124 STO 06 125 X<>Y 126 STO 07 127 LBL 02 128 RCL 09 129 RCL 08 130 2 131 / 132 CHS 133 STO 13 134 ENTER 135 X^2 136 RCL 09 137 - 138 STO 14 139 X<0? 140 SF 10 141 X<0? 142 GTO 02 143 SQRT 144 RCL Y 145 SIGN 146 * 147 + 148 X#0? 149 ST/ Y 150 STO 08 151 X<>Y 152 STO 09 153 LBL 02 154 FS? 09 155 FC? 10 156 GTO 03 157 1 158 RCL 07 159 + 160 RCL 06 161 + 162 SQRT 163 STO 11 164 SIGN 165 RCL 06 166 - 167 RCL 09 168 + 169 SQRT 170 STO 12 171 RCL 09 172 SQRT 173 + 174 X^2 175 1 176 - 177 SQRT 178 RCL 11 179 RCL 07 180 SQRT 181 + 182 X^2 183 1 184 - 185 SQRT 186 * 187 X^2 188 STO 15 189 RCL 07 190 RCL 09 191 + 192 ST+ X 193 RCL 06 194 X^2 195 STO 14 196 + 197 STO 16 198 X^2 199 RCL 07 200 4 201 * 202 RCL 14 203 - 204 STO 08 205 RCL 09 206 4 207 * 208 RCL 14 209 - 210 * 211 - 212 SQRT 213 ENTER 214 CHS 215 RCL 15 216 RCL 16 217 + 218 STO 18 219 ST+ Z 220 + 221 STO 14 222 X<>Y 223 STO 13 224 RCL 15 225 RCL 08 226 + |
227 STO 17 228 X<> Z 229 RCL 15 230 RJ 231 3 232 / 233 X<> 18 234 2 235 / 236 RCL 11 237 RCL 09 238 SQRT 239 * 240 RCL 12 241 RCL 07 242 SQRT 243 * 244 + 245 STO 19 246 X^2 247 - 248 STO 16 249 RCL 17 250 * 251 RCL 19 252 / 253 RCL 08 254 ST+ X 255 RCL 19 256 * 257 + 258 X^2 259 RCL 16 260 RCL 19 261 / 262 X^2 263 RCL 08 264 + 265 RCL 17 266 X^2 267 * 268 ENTER 269 RF 270 2 271 / 272 RCL 18 273 + 274 RCL 08 275 * 276 RCL 06 277 ST+ X 278 * 279 STO 18 280 RCL 16 281 RCL 11 282 ST/ 12 283 RCL 07 284 SQRT 285 * 286 STO 11 287 / 288 2 289 + 290 X^2 291 RCL 16 292 X^2 293 RCL 19 294 X^2 295 RCL 08 296 * 297 + 298 RCL 11 299 X^2 300 / 301 ENTER 302 RF 303 RCL 06 304 2 305 + 306 RCL 12 307 * 308 RCL 09 309 RCL 07 310 / 311 SQRT 312 RCL 06 313 * 314 + 315 * 316 2 317 / 318 ST+ 18 319 RCL 15 320 RCL 14 321 RCL 13 322 RF 323 RCL 06 324 * 325 CHS 326 RCL 18 327 + 328 ST+ X 329 STO 04 330 CLX 331 STO 05 332 STO 06 333 STO 07 334 GTO 07 335 LBL 05 336 STO 11 337 RCL 06 338 - 339 RCL 11 |
340 RCL 07 341 - 342 FS? 09 343 CHS 344 STO 13 345 * 346 X<>Y 347 STO 12 348 RCL 08 349 - 350 FS? 10 351 GTO 00 352 * 353 RCL 12 354 RCL 09 355 - 356 * 357 SQRT 358 RCL 12 359 RCL 06 360 - 361 RCL 12 362 RCL 07 363 - 364 FS? 09 365 CHS 366 STO 14 367 * 368 RCL 11 369 RCL 08 370 - 371 * 372 RCL 11 373 RCL 09 374 - 375 * 376 SQRT 377 + 378 X^2 379 STO 15 380 STO 18 381 RCL 11 382 RCL 06 383 - 384 RCL 11 385 RCL 08 386 - 387 * 388 RCL 14 389 * 390 RCL 12 391 RCL 09 392 - 393 * 394 SQRT 395 RCL 12 396 RCL 06 397 - 398 RCL 12 399 RCL 08 400 - 401 * 402 RCL 13 403 * 404 RCL 11 405 RCL 09 406 - 407 * 408 SQRT 409 + 410 X^2 411 STO 16 412 RCL 11 413 RCL 06 414 - 415 RCL 11 416 RCL 09 417 - 418 * 419 RCL 14 420 * 421 RCL 12 422 RCL 08 423 - 424 * 425 SQRT 426 RCL 12 427 RCL 06 428 - 429 RCL 12 430 RCL 09 431 - 432 * 433 RCL 13 434 * 435 RCL 11 436 RCL 08 437 - 438 * 439 SQRT 440 + 441 X^2 442 STO 17 443 GTO 02 444 LBL 00 445 X^2 446 RCL 09 447 X^2 448 + 449 * 450 SQRT 451 RCL 12 452 RCL 06 |
453 - 454 RCL 12 455 RCL 07 456 - 457 FS? 09 458 CHS 459 STO 14 460 * 461 RCL 11 462 RCL 08 463 - 464 X^2 465 RCL 09 466 X^2 467 + 468 * 469 SQRT 470 + 471 X^2 472 STO 15 473 STO 18 474 RCL 11 475 RCL 12 476 - 477 RCL 09 478 * 479 STO 05 480 RCL 11 481 RCL 08 482 - 483 RCL 12 484 LASTX 485 - 486 * 487 RCL 09 488 X^2 489 + 490 STO 19 491 RCL 11 492 RCL 06 493 - 494 RCL 14 495 * 496 ST* Z 497 * 498 R-P 499 X<>Y 500 2 501 / 502 X<>Y 503 SQRT 504 P-R 505 STO 16 506 X<>Y 507 STO 17 508 RCL 05 509 CHS 510 RCL 19 511 RCL 12 512 RCL 06 513 - 514 RCL 13 515 * 516 ST* Z 517 * 518 R-P 519 X<>Y 520 2 521 / 522 X<>Y 523 SQRT 524 P-R 525 X<>Y 526 RCL 17 527 + 528 X<>Y 529 RCL 16 530 + 531 R-P 532 X<>Y 533 ST+ X 534 X<>Y 535 X^2 536 P-R 537 STO 16 538 X<>Y 539 STO 17 540 LBL 02 541 RCL 11 542 RCL 12 543 - 544 X^2 545 ST/ 15 546 ST/ 16 547 ST/ 17 548 ST/ 18 549 RCL 09 550 RCL 06 551 - 552 RCL 08 553 LASTX 554 - 555 ST* Y 556 X^2 557 RCL 09 558 X^2 559 + 560 FC? 10 561 X<>Y 562 STO 19 563 FC? 09 564 CHS 565 ST+ 18 |
566 RCL 18 567 RCL 17 568 RCL 16 569 RCL 15 570 FS? 10 571 RJZ 572 FC? 10 573 RJ 574 RCL 06 575 RCL 07 576 - 577 FC? 08 578 FS? 09 579 CHS 580 * 581 3 582 / 583 ST* 19 584 RCL 18 585 RCL 11 586 RCL 06 587 - 588 RCL 12 589 LASTX 590 - 591 * 592 X=0? 593 GTO 00 594 / 595 ENTER 596 STO Z 597 1 598 FS? 09 599 CHS 600 + 601 XEQ "RF" 602 LBL 00 603 ST+ 19 604 RCL 17 605 RCL 16 606 RCL 15 607 FS? 10 608 RFZ 609 FC? 10 610 RF 611 RCL 06 612 * 613 RCL 19 614 FS? 08 615 CHS 616 + 617 ST+ X 618 RTN 619 LBL 03 620 FC? 09 621 GTO 03 622 RCL 08 623 STO 06 624 RCL 09 625 STO 07 626 RCL 11 627 STO 08 628 RCL 12 629 CHS 630 SQRT 631 STO 09 632 LBL 03 633 FC? 10 634 GTO 03 635 RCL 13 636 STO 08 637 RCL 14 638 CHS 639 SQRT 640 STO 09 641 LBL 03 642 FC? 10 643 FS? 09 644 GTO 04 645 RCL 06 646 RCL 07 647 X>Y? 648 X<>Y 649 RCL 08 650 X>Y? 651 X<>Y 652 RCL 09 653 X>Y? 654 X<>Y 655 STO 06 656 RDN 657 X<Y? 658 X<>Y 659 RDN 660 X>Y? 661 X<>Y 662 STO 07 663 X<> T 664 X<Y? 665 X<>Y 666 STO 09 667 X<>Y 668 STO 08 669 1 670 X>Y? 671 GTO 02 672 RCL 07 673 X>Y? 674 GTO 03 675 X<> 06 676 X<> 08 677 STO 07 678 GTO 03 |
679 LBL 02 680 RCL 08 681 X<> 06 682 STO 08 683 RCL 09 684 X<> 07 685 STO 09 686 GTO 03 687 LBL 04 688 RCL 06 689 RCL 07 690 X>Y? 691 X<>Y 692 STO 06 693 X<>Y 694 STO 07 695 LBL 03 696 FS?C 09 697 SF 10 698 RCL 06 699 1 700 X<Y? 701 GTO 02 702 RCL 07 703 X>Y? 704 GTO 06 705 CF 09 706 RCL 06 707 X<> 07 708 STO 06 709 X<0? 710 0 711 ENTER 712 SIGN 713 XEQ 05 714 STO 04 715 CLX 716 STO 05 717 STO 07 718 GTO 07 719 LBL 02 720 CF 09 721 SF 08 722 CLST 723 SIGN 724 XEQ 05 725 STO 04 726 CLST 727 RCL 06 728 XEQ 05 729 ST+ X 730 STO 05 731 CLX 732 X<> 06 733 STO 07 734 GTO 07 735 LBL 06 736 SF 09 737 RCL 06 738 X<0? 739 0 740 ENTER 741 SIGN 742 XEQ 05 743 STO 04 744 RCL 06 745 X<0? 746 0 747 RCL 07 748 XEQ 05 749 ST+ X 750 STO 05 751 LBL 07 752 RCL 06 753 X<0? 754 CLX 755 STO 06 756 DEG 757 90 758 TAN 759 RCL 07 760 X<=0? 761 X<>Y 762 STO 07 763 SF 24 764 RCL 02 765 ABS 766 SQRT 767 ST/ 04 768 ST/ 05 769 RCL 20 770 CHS 771 X#0? 772 SIGN 773 STO 09 774 977.7922214 775 RCL 00 776 / 777 ST* 04 778 ST* 05 779 RCL 20 780 ABS 781 SQRT 782 X=0? 783 SIGN 784 / 785 ST* 06 786 ST* 07 787 STO 08 788 RCL 05 789 RCL 04 790 CF 24 791 END |
( 977 bytes / SIZE 021 )
STACK | INPUTS | OUTPUTS |
T |
H0 > 0 |
k |
Z |
(Omega) mat |
R0 |
Y |
(Omega)lambda |
P |
X |
(Omega)rad |
T |
T = Age of the Universe in Gigayears ,
k = +1 , 0
, -1 = spherical, euclidean , hyperbolic
Universes
P = Period
of the Universe in Gigayears , R0
= current scale factor of the Universe in Gigalightyears
Example1: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = -0.1 , (Omega)lambda = -0.003 , (Omega) rad = -0.001
71 ENTER^
-0.1 ENTER^
-0.003 ENTER^
-0.001 XEQ "AUM" >>>> T = 14.61256009 ---Execution time = 59s---
RDN P = 796.1455565
RDN R0 = 13.10701187
RDN k = -1 ( hyperbolic space )
-We also have in R06 & R07
Rmin = 1.306380222
Rmax = 250.8400402
Example2: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = 0.044 , (Omega)lambda = 0.521 , (Omega) rad = 0.000049 ( our Universe ? )
71 ENTER^
0.044 ENTER^
0.521 ENTER^
0.000049 XEQ "AUM" >>>> T = 15.60221452 ---Execution time = 48s---
RDN P = 0 ( no periodic universe )
RDN R0 = 20.88180628
RDN k = -1
Rmin = 0
Rmax = 9.999999999 E99 = +infinity
Example3: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = 0.271 , (Omega)lambda = 0.732 , (Omega) rad = 0.000049 ( our Universe ? )
71 ENTER^
0.271 ENTER^
0.732 ENTER^
0.000049 XEQ "AUM" >>>> T = 13.66788681 ---Execution time = 102s---
RDN P = 0 ( no periodic universe )
RDN R0 = 249.4075046
RDN k = +1 ( spherical space )
Rmin = 0
Rmax = 9.999999999 E99 = +infinity
Example4: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = -0.6 , (Omega)lambda = 0.4 , (Omega) rad = 0.1
71 ENTER^
-0.6 ENTER^
0.4 ENTER^
0.1 XEQ "AUM" >>>> T = 17.27498133 ---Execution time = 44s---
RDN P = 0 ( no periodic universe )
RDN R0 = 13.13082118
RDN k = -1 ( hyperbolic space )
Rmin = 0
Rmax = 9.999999999 E99 = +infinity
Example5: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = 0.01 , (Omega)lambda = -0.4 , (Omega) rad = 0.01
71 ENTER^
0.01 ENTER^
-0.4 ENTER^
0.01 XEQ "AUM" >>>> T = 11.30457447 ---Execution time = 90s---
RDN P = 66.21313811
RDN R0 = 11.72326781
RDN k = -1 ( hyperbolic space )
Rmin = 0
Rmax = 21.83998798
Example6: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = -0.4 , (Omega)lambda = +0.001 , (Omega) rad = 1.4
71 ENTER^
-0.4 ENTER^
0.001 ENTER^
1.4 XEQ "AUM" >>>> T = 6.484937782 ---Execution time = 114s---
RDN P = 900.0920456
RDN R0 = 435.5000702
RDN k = +1 ( spherical space )
Rmin = 0
Rmax = 1889.773264
Notes:
-Lines 157 to 330 employ the formula given in reference [3]
-Lines 335 to 618 use the formula given in reference [1] ( for elliptic integrals [-1,-1,-1;-1,+2] )
-But the integral: §ar x dx / sqrt [(x-a) (b-x) (x+c) (x+d) ] may be re-written:
§0+infinity sqrt(r-a) (a.y+r) / (y+1) / sqrt [ ((b-a).y + (b-r)) ((a+c).y + (r+c)) ((a+d).y + (r+d)) ] dy by the change of variable: x = (a.y+r) / (y+1)
-This reduces the number of bytes ( 758 instead of 976 ) , but the execution times will be a little increased... ( except in examples 1 & 4 )
Data Registers: R00 = H0
R01 = (Omega)mat R04 = T R06 = Rmin R08 = R0 R10.....: temp
R02 = (Omega)lambda R05 = P R07 = Rmax R09 = k
R03 = (Omega)rad
Flags: F09-F10-F24
Subroutines: ( M-Code routines ) RF RFZ RJ RJZ ( cf "Carlson Elliptic Integrals for the HP41" )
-Lines 155-333 are three-byte GTOs
01 LBL "AUM" 02 CF 09 03 CF 10 04 R^ 05 STO 00 06 SIGN 07 X<>Y 08 STO 03 09 STO 05 10 - 11 X<>Y 12 STO 02 13 - 14 X<>Y 15 STO 01 16 STO 04 17 - 18 STO 10 19 STO 20 20 RCL 02 21 ST/ 04 22 ST/ 05 23 ST/ 10 24 CLX 25 STO 06 26 STO 07 27 LBL 01 28 RCL 06 29 X^2 30 STO 11 31 RCL 10 32 + 33 STO 13 34 RCL 07 35 ST+ X 36 STO 12 37 - 38 STO 08 39 RCL 04 40 RCL 06 41 RCL 08 42 * 43 - 44 STO 09 45 * 46 RCL 07 47 RCL 13 48 - 49 RCL 07 50 * 51 RCL 05 52 + 53 STO 14 54 RCL 06 55 ST+ X 56 STO 15 57 * 58 + 59 RCL 10 60 RCL 11 61 3 62 * 63 + 64 RCL 12 65 - 66 ST* 08 67 RCL 14 68 * 69 RCL 06 70 RCL 09 71 * 72 RCL 12 73 * 74 - 75 RCL 07 76 RCL 15 77 X^2 78 * 79 RCL 08 80 + 81 ST/ Z 82 / 83 ST+ 07 84 X<>Y 85 ST+ 06 86 R-P |
87 VIEW X 88 E-8 89 X<Y? 90 GTO 01 91 RCL 06 92 CHS 93 STO 08 94 X^2 95 RCL 10 96 RCL 07 97 - 98 + 99 STO 09 100 RCL 07 101 RCL 06 102 2 103 / 104 CHS 105 STO 11 106 ENTER 107 X^2 108 RCL 07 109 - 110 STO 12 111 CLD 112 X<0? 113 SF 09 114 X<0? 115 GTO 02 116 SQRT 117 RCL Y 118 SIGN 119 * 120 + 121 X#0? 122 ST/ Y 123 STO 06 124 X<>Y 125 STO 07 126 LBL 02 127 RCL 09 128 RCL 08 129 2 130 / 131 CHS 132 STO 13 133 ENTER 134 X^2 135 RCL 09 136 - 137 STO 14 138 X<0? 139 SF 10 140 X<0? 141 GTO 02 142 SQRT 143 RCL Y 144 SIGN 145 * 146 + 147 X#0? 148 ST/ Y 149 STO 08 150 X<>Y 151 STO 09 152 LBL 02 153 FS? 09 154 FC? 10 155 GTO 03 156 1 157 RCL 07 158 + 159 RCL 06 160 + 161 SQRT 162 STO 11 163 SIGN 164 RCL 06 165 - 166 RCL 09 167 + 168 SQRT 169 STO 12 170 RCL 09 171 SQRT 172 + |
173 X^2 174 1 175 - 176 SQRT 177 RCL 11 178 RCL 07 179 SQRT 180 + 181 X^2 182 1 183 - 184 SQRT 185 * 186 X^2 187 STO 15 188 RCL 07 189 RCL 09 190 + 191 ST+ X 192 RCL 06 193 X^2 194 STO 14 195 + 196 STO 16 197 X^2 198 RCL 07 199 4 200 * 201 RCL 14 202 - 203 STO 08 204 RCL 09 205 4 206 * 207 RCL 14 208 - 209 * 210 - 211 SQRT 212 ENTER 213 CHS 214 RCL 15 215 RCL 16 216 + 217 STO 18 218 ST+ Z 219 + 220 STO 14 221 X<>Y 222 STO 13 223 RCL 15 224 RCL 08 225 + 226 STO 17 227 X<> Z 228 RCL 15 229 RJ 230 3 231 / 232 X<> 18 233 2 234 / 235 RCL 11 236 RCL 09 237 SQRT 238 * 239 RCL 12 240 RCL 07 241 SQRT 242 * 243 + 244 STO 19 245 X^2 246 - 247 STO 16 248 RCL 17 249 * 250 RCL 19 251 / 252 RCL 08 253 ST+ X 254 RCL 19 255 * 256 + 257 X^2 258 RCL 16 |
259 RCL 19 260 / 261 X^2 262 RCL 08 263 + 264 RCL 17 265 X^2 266 * 267 ENTER 268 RF 269 2 270 / 271 RCL 18 272 + 273 RCL 08 274 * 275 RCL 06 276 ST+ X 277 * 278 STO 18 279 RCL 16 280 RCL 11 281 ST/ 12 282 RCL 07 283 SQRT 284 * 285 STO 11 286 / 287 2 288 + 289 X^2 290 RCL 16 291 X^2 292 RCL 19 293 X^2 294 RCL 08 295 * 296 + 297 RCL 11 298 X^2 299 / 300 ENTER 301 RF 302 RCL 06 303 2 304 + 305 RCL 12 306 * 307 RCL 09 308 RCL 07 309 / 310 SQRT 311 RCL 06 312 * 313 + 314 * 315 2 316 / 317 ST+ 18 318 RCL 15 319 RCL 14 320 RCL 13 321 RF 322 RCL 06 323 * 324 CHS 325 RCL 18 326 + 327 ST+ X 328 STO 04 329 CLX 330 STO 05 331 STO 06 332 STO 07 333 GTO 07 334 LBL 05 335 STO 11 336 RCL 06 337 RCL 08 338 - 339 RCL 06 340 RCL 09 341 - 342 * 343 STO 15 344 RCL 07 |
345 RCL 11 346 - 347 RCL 07 348 RCL 06 349 - 350 / 351 STO 12 352 RCL 11 353 RCL 08 354 - 355 RCL 06 356 LASTX 357 - 358 FS? 10 359 GTO 00 360 / 361 STO 13 362 RCL 11 363 RCL 09 364 - 365 RCL 06 366 LASTX 367 - 368 / 369 STO 14 370 GTO 02 371 LBL 00 372 * 373 RCL 09 374 X^2 375 + 376 STO 13 377 RCL 11 378 RCL 06 379 ST- Y 380 RCL 08 381 - 382 X^2 383 RCL 09 384 ST* Z 385 X^2 386 + 387 STO 15 388 ST/ 13 389 / 390 STO 14 391 LBL 02 392 1 393 X<>Y 394 RCL 13 395 RCL 12 396 FS? 10 397 RJZ 398 FC? 10 399 RJ 400 RCL 11 401 RCL 06 402 - 403 * 404 3 405 / 406 X<> 14 407 RCL 13 408 RCL 12 409 FS? 10 410 RFZ 411 FC? 10 412 RF 413 RCL 06 414 * 415 RCL 14 416 + 417 RCL 15 418 SQRT 419 / 420 RCL 11 421 RCL 06 422 - 423 RCL 07 424 LASTX 425 - 426 / 427 ABS 428 SQRT 429 ST+ X 430 * 431 RTN |
432 LBL 03 433 FC? 09 434 GTO 03 435 RCL 08 436 STO 06 437 RCL 09 438 STO 07 439 RCL 11 440 STO 08 441 RCL 12 442 CHS 443 SQRT 444 STO 09 445 LBL 03 446 FC? 10 447 GTO 03 448 RCL 13 449 STO 08 450 RCL 14 451 CHS 452 SQRT 453 STO 09 454 LBL 03 455 FC? 10 456 FS? 09 457 GTO 04 458 RCL 06 459 RCL 07 460 X>Y? 461 X<>Y 462 RCL 08 463 X>Y? 464 X<>Y 465 RCL 09 466 X>Y? 467 X<>Y 468 STO 06 469 RDN 470 X<Y? 471 X<>Y 472 RDN 473 X>Y? 474 X<>Y 475 STO 07 476 X<> T 477 X<Y? 478 X<>Y 479 STO 09 480 X<>Y 481 STO 08 482 1 483 X>Y? 484 GTO 02 485 RCL 07 486 X>Y? 487 GTO 03 488 X<> 06 489 X<> 08 490 STO 07 491 GTO 03 492 LBL 02 493 RCL 08 494 X<> 06 495 STO 08 496 RCL 09 497 X<> 07 498 STO 09 499 GTO 03 500 LBL 04 501 RCL 06 502 RCL 07 503 X>Y? 504 X<>Y 505 STO 06 506 X<>Y 507 STO 07 508 LBL 03 509 FS?C 09 510 SF 10 511 RCL 06 512 1 513 X<Y? 514 GTO 02 515 RCL 07 516 X>Y? 517 GTO 06 518 X<> 06 |
519 STO 07 520 1 521 XEQ 05 522 STO 04 523 RCL 06 524 CHS 525 X<=0? 526 GTO 00 527 CLX 528 XEQ 05 529 ST- 04 530 LBL 00 531 CLX 532 STO 05 533 STO 07 534 GTO 07 535 LBL 02 536 CLX 537 XEQ 05 538 STO 04 539 ST+ X 540 STO 05 541 1 542 XEQ 05 543 ST- 04 544 CLX 545 X<> 06 546 STO 07 547 GTO 07 548 LBL 06 549 1 550 XEQ 05 551 STO 04 552 RCL 07 553 XEQ 05 554 ST+ X 555 STO 05 556 RCL 06 557 CHS 558 X<=0? 559 GTO 07 560 CLX 561 XEQ 05 562 ST- 04 563 ST+ X 564 ST- 05 565 LBL 07 566 RCL 06 567 X<0? 568 CLX 569 STO 06 570 DEG 571 90 572 TAN 573 RCL 07 574 X<=0? 575 X<>Y 576 STO 07 577 SF 24 578 RCL 02 579 ABS 580 SQRT 581 ST/ 04 582 ST/ 05 583 RCL 20 584 CHS 585 X#0? 586 SIGN 587 STO 09 588 977.7922214 589 RCL 00 590 / 591 ST* 04 592 ST* 05 593 RCL 20 594 ABS 595 SQRT 596 X=0? 597 SIGN 598 / 599 ST* 06 600 ST* 07 601 STO 08 602 RCL 05 603 RCL 04 604 CF 24 605 END |
( 758 bytes / SIZE 021 )
STACK | INPUTS | OUTPUTS |
T |
H0 > 0 |
k |
Z |
(Omega) mat |
R0 |
Y |
(Omega)lambda |
P |
X |
(Omega)rad |
T |
T = Age of the Universe in Gigayears ,
k = +1 , 0
, -1 = spherical, euclidean , hyperbolic
Universes
P = Period
of the Universe in Gigayears , R0
= current scale factor of the Universe in Gigalightyears
Example1: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = -0.1 , (Omega)lambda = -0.003 , (Omega) rad = -0.001
71 ENTER^
-0.1 ENTER^
-0.003 ENTER^
-0.001 XEQ "AUM" >>>> T = 14.61256009 ---Execution time = 53s---
RDN P = 796.1455560
RDN R0 = 13.10701187
RDN k = -1 ( hyperbolic space )
-We also have in R06 & R07
Rmin = 1.306380222
Rmax = 250.8400402
Example2: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = 0.044 , (Omega)lambda = 0.521 , (Omega) rad = 0.000049 ( our Universe ? )
71 ENTER^
0.044 ENTER^
0.521 ENTER^
0.000049 XEQ "AUM" >>>> T = 15.60221457 ---Execution time = 54s---
RDN P = 0 ( no periodic universe )
RDN R0 = 20.88180628
RDN k = -1
Rmin = 0
Rmax = 9.999999999 E99 = +infinity
Example3: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = 0.271 , (Omega)lambda = 0.732 , (Omega) rad = 0.000049 ( our Universe ? )
71 ENTER^
0.271 ENTER^
0.732 ENTER^
0.000049 XEQ "AUM" >>>> T = 13.66788679 ---Execution time = 106s---
RDN P = 0 ( no periodic universe )
RDN R0 = 249.4075046
RDN k = +1 ( spherical space )
Rmin = 0
Rmax = 9.999999999 E99 = +infinity
Example4: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = -0.6 , (Omega)lambda = 0.4 , (Omega) rad = 0.1
71 ENTER^
-0.6 ENTER^
0.4 ENTER^
0.1 XEQ "AUM" >>>> T = 17.27498133 ---Execution time = 44s---
RDN P = 0 ( no periodic universe )
RDN R0 = 13.13082118
RDN k = -1 ( hyperbolic space )
Rmin = 0
Rmax = 9.999999999 E99 = +infinity
Example5: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = 0.01 , (Omega)lambda = -0.4 , (Omega) rad = 0.01
71 ENTER^
0.01 ENTER^
-0.4 ENTER^
0.01 XEQ "AUM" >>>> T = 11.30457458 ---Execution time = 107s---
RDN P = 66.21313789
RDN R0 = 11.72326781
RDN k = -1 ( hyperbolic space )
Rmin = 0
Rmax = 21.83998798
Example6: Hubble "constant" = 71 km/s/Mpc , (Omega)mat = -0.4 , (Omega)lambda = +0.001 , (Omega) rad = 1.4
71 ENTER^
-0.4 ENTER^
0.001 ENTER^
1.4 XEQ "AUM" >>>> T = 6.484938348 ---Execution time = 109s---
RDN P = 900.0920468
RDN R0 = 435.5000702
RDN k = +1 ( spherical space )
Rmin = 0
Rmax = 1889.773264
-In example 6, T is calculated by a difference between 2 numbers close to P
-So, the precision may be only 6 decimals with an HP41:
-With Free42 , it yields: T = 6.4849377713
6°) Redshift -> Distance
a) Gauss-Legendre 2-Point Formula
Data Registers: • R00 = H0 ( Registers R00-R01-R02-R03 are to be initialized before executing "Z-D" )
• R01 = (Omega)mat R04 = D R07 = R0 R09 to R14: temp
• R02 = (Omega)lambda R05 = D0 R08 = k
• R03 = (Omega)rad R06 = DL
Flags: /
Subroutines: /
01 LBL "Z-D" 02 DEG 03 STO 14 04 SIGN 05 + 06 STO 10 07 RCL 01 08 LASTX 09 - 10 RCL 02 11 + 12 RCL 03 13 + 14 STO 11 15 X#0? 16 SIGN |
17 STO 08 18 977.7922214 19 RCL 00 20 / 21 STO 09 22 RCL 11 23 ABS 24 SQRT 25 X=0? 26 SIGN 27 / 28 STO 07 29 1 30 RCL 10 31 1/X 32 STO 12 |
33 - 34 RCL 14 35 ST+ 14 36 / 37 STO Y 38 3 39 SQRT 40 / 41 STO 13 42 - 43 STO 06 44 2 45 / 46 ST- 12 47 CLX 48 STO 04 |
49 STO 05 50 LBL 01 51 RCL 12 52 RCL 13 53 X<> 06 54 STO 13 55 + 56 STO 12 57 ENTER 58 ENTER 59 X^2 60 RCL 02 61 * 62 RCL 11 63 - 64 * |
65 RCL 01 66 + 67 * 68 RCL 03 69 + 70 SQRT 71 1/X 72 ST+ 05 73 * 74 ST+ 04 75 DSE 14 76 GTO 01 77 RCL 09 78 RCL 13 79 * 80 60 |
81 SIN 82 * 83 ST* 04 84 ST* 05 85 RCL 05 86 RCL 07 87 / 88 ENTER 89 E^X-1 90 LASTX 91 CHS 92 E^X-1 93 - 94 2 95 / 96 RCL Y |
97 R-D 98 SIN 99 RCL 08 100 X#0? 101 ENTER 102 X>0? 103 ENTER 104 R^ 105 RCL 10 106 * 107 RCL 07 108 * 109 STO 06 110 RCL 05 111 RCL 04 112 END |
( 142 bytes / SIZE 015 )
STACK | INPUTS | OUTPUTS |
Z |
/ |
DL |
Y |
z |
D0 |
X |
N |
D |
Example1: H0 = 68 km/s/Mpc , (Omega)mat = 0.044 , (Omega)lambda = 0.521 , (Omega) rad = 0.000049 z = 7
68 STO 00
0.044 STO 01
0.521 STO 02
0.000049 STO 03 and if you choose N = 20
7 ENTER^
20 XEQ "Z-D" >>>> D = 14.75577029 Gly ---Execution time = 42s---
RDN D0 = 35.73893637 Gly
RDN DL = 432.2896646 Gly
-With N = 40, it yields: 14.75576636 35.73909040 432.2929577
-With N = 100 ------- 14.75576611 35.73910080 432.2931801
-And we have: R0 = R07 = 21.80306243 Gly and k = R08 = -1 ( hyperbolic space )
Example2: H0 = 68 km/s/Mpc , (Omega)mat = -0.1 , (Omega)lambda = -0.003 , (Omega) rad = -0.001 z = 7
68 STO 00
-0.1 STO 01
-0.003 STO 02
-0.001 STO 03 and if we choose N = 20
7 ENTER^
20 XEQ "Z-D" >>>> D = 13.88126253 Gly ---Execution time = 42s---
RDN D0 = 35.94478929 Gly
RDN DL = 752.8766458 Gly
-With N = 40, it yields: 13.88233261 35.95641236 753.5230703
-With N = 100 ------- 13.88244594 35.95762620 753.5906104
-And we have: R0 = R07 = 13.68526238 Gly and k = R08 = -1 ( hyperbolic space )
Note:
-The precision is relatively good, provided z is not too close to the maximum redshift.
b) Tanh-Sinh Quadrature
-The precision is controlled by the display format.
Data Registers: • R00 = H0 ( Registers R00-R01-R02-R03 are to be initialized before executing "Z-D" )
• R01 = (Omega)mat R04 = D R07 = R0 R09 to R14: temp
• R02 = (Omega)lambda R05 = D0 R08 = k
• R03 = (Omega)rad R06 = DL
Flags: /
Subroutines: /
01 LBL "Z-D" 02 DEG 03 1 04 STO 06 05 STO 13 06 STO 15 07 + 08 STO 16 09 1/X 10 RCL 01 11 RCL 02 12 + 13 RCL 03 14 + 15 RCL 06 16 - 17 STO 09 18 CLX 19 STO 07 20 STO 08 21 SIGN 22 X<>Y 23 ST- 15 24 + 25 2 26 ST/ 15 27 / |
28 STO 14 29 XEQ 00 30 STO 05 31 X<>Y 32 STO 04 33 GTO 02 34 LBL 00 35 ENTER 36 ENTER 37 X^2 38 RCL 02 39 * 40 RCL 09 41 - 42 * 43 RCL 01 44 + 45 * 46 RCL 03 47 + 48 SQRT 49 RCL 15 50 X<>Y 51 / 52 ST* Y 53 RTN 54 LBL 01 |
55 2 56 ST/ 04 57 ST/ 05 58 ST/ 06 59 STO 13 60 SIGN 61 CHS 62 STO 08 63 LBL 02 64 RCL 13 65 ST+ 08 66 RCL 06 67 RCL 08 68 * 69 E^X-1 70 LASTX 71 CHS 72 E^X-1 73 - 74 STO 12 75 E^X-1 76 STO Y 77 2 78 ST/ 12 79 + 80 / 81 RCL 15 |
82 * 83 STO 11 84 RCL 14 85 + 86 XEQ 00 87 STO 10 88 X<>Y 89 X<> 11 90 CHS 91 RCL 14 92 + 93 XEQ 00 94 RCL 10 95 + 96 X<>Y 97 RCL 11 98 + 99 RCL 06 100 ST* Z 101 ST* Y 102 RCL 08 103 * 104 E^X 105 ENTER 106 1/X 107 + 108 ST+ X |
109 ST* Z 110 * 111 RCL 12 112 E^X 113 ENTER 114 1/X 115 + 116 X^2 117 ST/ Z 118 / 119 RCL 04 120 + 121 STO 04 122 LASTX 123 - 124 ABS 125 X<>Y 126 RCL 05 127 + 128 STO 05 129 LASTX 130 - 131 ABS 132 + 133 X#0? 134 GTO 02 |
135 VIEW 05 136 RCL 05 137 RND 138 LASTX 139 X<> 07 140 RND 141 X#Y? 142 GTO 01 143 977.7922214 144 RCL 00 145 / 146 ST* 04 147 ST* 05 148 RCL 05 149 X<>Y 150 RCL 09 151 ABS 152 SQRT 153 X=0? 154 SIGN 155 / 156 STO 07 157 / 158 ENTER 159 E^X-1 160 LASTX |
161 CHS 162 E^X-1 163 - 164 2 165 / 166 RCL Y 167 R-D 168 SIN 169 RCL 09 170 X#0? 171 SIGN 172 STO 08 173 X#0? 174 ENTER 175 X>0? 176 ENTER 177 R^ 178 RCL 07 179 * 180 RCL 16 181 * 182 STO 06 183 RCL 05 184 RCL 04 185 CLD 186 END |
( 235 bytes / SIZE 017 )
STACK | INPUTS | OUTPUTS |
Z |
/ |
DL |
Y |
/ |
D0 |
X |
z |
D |
Example1: H0 = 68 km/s/Mpc , (Omega)mat = 0.044 , (Omega)lambda = 0.521 , (Omega) rad = 0.000049 z = 7
68 STO 00
0.044 STO 01
0.521 STO 02
0.000049 STO 03 and with FIX 7
7 XEQ "Z-D" >>>> D = 14.75576607 Gly ---Execution time = 142s---
RDN D0 = 35.73910110 Gly
RDN DL = 432.2931865 Gly
-And we have: R0 = R07 = 21.80306243 Gly and k = R08 = -1 ( hyperbolic space )
Example2: H0 = 68 km/s/Mpc , (Omega)mat = -0.1 , (Omega)lambda = -0.003 , (Omega) rad = -0.001 z = 7
68 STO 00
-0.1 STO 01
-0.003 STO 02
-0.001 STO 03 FIX 7
7 XEQ "Z-D" >>>> D = 13.88244965 Gly ---Execution time = 145s---
RDN D0 = 35.95766592 Gly
RDN DL = 753.5928202 Gly
-And R0 = R07 = 13.68526238 Gly and k = R08 = -1 ( hyperbolic space )
c) Cosmological Constant = 0 ( 2 programs )
-With positive matter & negative pressure.
-These universes have spherical spaces ( k = +1 )
-All the distances are computed with elementary functions.
-You choose the minimum, current & maximum scale factors in R01 to R03
Data Registers: R00-R04-R05-R06: temp ( Registers R01-R02-R03 are to be initialized before executing "Z-D" )
• R01 = Rmin
• R02 = R0
• R03 = Rmax
Flags: /
Subroutines: /
01 LBL "Z-D" 02 RAD 03 1 04 + 05 STO 00 06 RCL 03 07 RCL 02 08 - 09 STO 04 10 LASTX 11 RCL 01 12 - |
13 ST* 04 14 - 15 RCL 01 16 RCL 03 17 - 18 STO 06 19 / 20 ASIN 21 RCL 01 22 RCL 02 23 R^ 24 / |
25 - 26 STO 05 27 LASTX 28 RCL 03 29 - 30 ST* 05 31 - 32 RCL 06 33 / 34 ASIN 35 - 36 ENTER |
37 SIN 38 RCL 00 39 * 40 RCL 01 41 RCL 03 42 + 43 2 44 / 45 R^ 46 * 47 RCL 04 48 SQRT |
49 - 50 RCL 05 51 SQRT 52 + 53 R^ 54 RCL 02 55 ST* T 56 * 57 X<>Y 58 DEG 59 END |
( 70 bytes / SIZE 007 )
STACK | INPUTS | OUTPUTS |
Z |
/ |
DL |
Y |
/ |
D0 |
X |
z |
D |
Example: Rmin = 2 R0 = 41 Rmax = 257 ( Gygalightyears ) z = 7
2 STO 01
41 STO 02
257 STO 03
7 XEQ "Z-D" >>>> D = 11.60902212 Gly ---Execution time = 3s---
RDN D0 = 23.85152165 Gly
RDN DL = 180.2301791 Gly
-In the following program, we assume that 1 - (Omega)mat - (Omega)rad > 0 , k = - 1 ( hyperbolic space )
-You choose H0 , (Omega)mat & (Omega)rad
Data Registers: • R00 = H0 ( Registers R00-R01-R02 are to be initialized before executing "Z-D" )
• R01 = (Omega)mat R03 = z+1 R04-R06: temp
• R02 = (Omega)rad R05 = D
Flags: /
Subroutines: /
01 LBL "Z-D" 02 1 03 + 04 1/X 05 STO 03 06 RCL 01 07 1 08 RCL 01 09 - 10 RCL 02 11 - 12 1/X 13 STO 04 |
14 * 15 STO 05 16 + 17 * 18 RCL 02 19 RCL 04 20 * 21 + 22 SQRT 23 STO 06 24 + 25 RCL 05 26 2 |
27 / 28 STO Z 29 ST+ Y 30 1 31 + 32 RCL 04 33 SQRT 34 STO 04 35 ST- 06 36 + 37 / 38 LN 39 STO 05 |
40 * 41 RCL 06 42 - 43 X<> 05 44 CHS 45 ENTER 46 E^X-1 47 LASTX 48 CHS 49 E^X-1 50 - 51 RCL 03 52 ST+ X |
53 / 54 X<>Y 55 RCL 04 56 RCL 00 57 / 58 977.7922214 59 * 60 ST* 05 61 ST* Z 62 * 63 RCL 05 64 END |
( 89 bytes / SIZE 007 )
STACK | INPUTS | OUTPUTS |
Z |
/ |
DL |
Y |
/ |
D0 |
X |
z |
D |
Example1: H0 = 71 km/s/Mpc , (Omega)mat = 0.044 , (Omega) rad = 0.000049 z = 7
71 STO 00
0.044 STO 01
0.000049 STO 02
7 XEQ "Z-D" >>>> D = 11.71594217 Gly ---Execution time = 3.5s---
RDN D0 = 27.30593471 Gly
RDN DL = 383.4090767 Gly
Example2: H0 = 68 km/s/Mpc (Omega)mat = 0.2 (Omega)rad = 0.1 z = 7
68 STO 00
0.2 STO 01
0.1 STO 02
7 XEQ "Z-D" >>>> D = 10.03687104 Gly
RDN D0 = 20.51883416 Gly
RDN DL = 206.0220177 Gly
d) No Matter, Negative Pressure
-These universes have hyperbolic spaces ( k = -1 )
-The light-travel time distance is computed with elementary functions.
-The comoving distance employs Carlson elliptic integrals RF
-You choose the minimum, current & maximum scale factors in R01 to R03
Data Registers: R00 thru R11: temp ( Registers R01-R02-R03 are to be initialized before executing "Z-D" )
• R01 = Rmin R04 = D
• R02 = R0 R05 = D0
• R03 = Rmax R06 = DL
Flags: /
Subroutine: ( M-Code ) RF ( cf "Carlson Elliptic Integrals for the HP41" )
01 LBL "Z-D" 02 DEG 03 1 04 + 05 STO 10 06 RCL 02 07 X<>Y 08 / 09 STO 00 10 RCL 02 11 X^2 12 STO 06 13 ST+ X 14 RCL 01 15 X^2 16 STO 04 17 STO 07 18 RCL 03 19 X^2 20 STO 08 |
21 ST- 04 22 + 23 STO 11 24 - 25 RCL 04 26 / 27 ACOS 28 RCL 00 29 X^2 30 STO 09 31 ST+ X 32 RCL 11 33 - 34 RCL 04 35 / 36 ACOS 37 - 38 D-R 39 2 40 / |
41 STO 04 42 RCL 06 43 RCL 07 44 - 45 RCL 08 46 RCL 09 47 - 48 * 49 SQRT 50 RCL 09 51 RCL 07 52 - 53 RCL 08 54 RCL 06 55 - 56 * 57 SQRT 58 + 59 X^2 60 STO 08 |
61 RCL 01 62 RCL 02 63 + 64 STO 09 65 RCL 03 66 RCL 02 67 - 68 STO 06 69 * 70 RCL 00 71 RCL 01 72 - 73 ST* 09 74 * 75 RCL 00 76 RCL 03 77 + 78 ST* 06 79 * 80 SQRT |
81 RCL 00 82 RCL 01 83 + 84 ST* 06 85 RCL 03 86 RCL 00 87 - 88 ST* 09 89 * 90 RCL 02 91 RCL 01 92 - 93 ST* 06 94 * 95 RCL 02 96 RCL 03 97 + 98 ST* 09 99 * 100 SQRT |
101 + 102 X^2 103 RCL 09 104 SQRT 105 RCL 06 106 SQRT 107 + 108 X^2 109 RCL 02 110 RCL 00 111 - 112 X^2 113 ST/ 08 114 ST/ Z 115 / 116 RCL 08 117 RF 118 ST+ X 119 RCL 11 120 SQRT |
121 ST* 04 122 * 123 STO 05 124 E^X-1 125 LASTX 126 CHS 127 E^X-1 128 - 129 2 130 / 131 RCL 10 132 * 133 RCL 02 134 ST* 05 135 * 136 STO 06 137 RCL 05 138 RCL 04 139 END |
( 162 bytes / SIZE 012 )
STACK | INPUTS | OUTPUTS |
Z |
/ |
DL |
Y |
/ |
D0 |
X |
z |
D |
Example: Rmin = 0.7 R0 = 14 Rmax = 314 ( Gygalightyears ) z = 7 , z = 19 = zmax
0.7 STO 01
14 STO 02
314 STO 03
7 XEQ "Z-D" >>>> D = 12.38326745 Gly ---Execution time = 11s---
RDN D0 = 29.70733010 Gly
RDN DL = 460.7466900 Gly
19 XEQ "Z-D" >>>> D = 13.98718383 Gly
RDN D0 = 51.64270084 Gly
RDN DL = 5595.856028 Gly
-With z = 19, D has the same value as the age of this universe ( more exactly the time since the last minimum scale factor...
-If we only want to compute D, the program becomes smaller:
Data Registers: R00-R04: temp ( Registers R01-R02-R03 are to be initialized before executing "Z-D" )
• R01 = Rmin
• R02 = R0
• R03 = Rmax
Flags: /
Subroutines: /
01 LBL "Z-D" 02 DEG 03 1 04 + 05 RCL 02 06 X^2 07 ST+ X |
08 RCL 01 09 X^2 10 STO 04 11 RCL 03 12 X^2 13 ST- 04 14 + |
15 STO 00
16 - 17 RCL 04 18 / 19 ACOS 20 RCL 02 21 R^ |
22 / 23 X^2 24 ST+ X 25 RCL 00 26 - 27 RCL 04 28 / 29 ACOS |
30 - 31 D-R 32 RCL 00 33 SQRT 34 * 35 2 36 / 37 END |
( 48 bytes / SIZE 005 )
STACK | INPUTS | OUTPUTS |
Y |
/ |
z+1 |
X |
z |
D |
Example: Rmin = 0.7 R0 = 14 Rmax = 314 ( Gygalightyears ) z = 7
0.7 STO 01
14 STO 02
314 STO 03
7 XEQ "Z-D" >>>> D = 12.38326745 Gly ---Execution time = 2.5s---
e) No Pressure, Negative Matter
-These universes have hyperbolic spaces ( k = -1 )
-The light-travel time distance and the comoving distance employ Carlson elliptic integrals RF & RJ
-You choose the minimum, current & maximum scale factors in R01 to R03
Data Registers: R00 thru R12: temp ( Registers R01-R02-R03 are to be initialized before executing "Z-D" )
• R01 = Rmin R04 = D
• R02 = R0 R05 = D0
• R03 = Rmax R06 = DL
Flags: /
Subroutines: ( M-Code ) RF & RJ ( cf "Carlson Elliptic Integrals for the HP41" )
01 LBL "Z-D" 02 DEG 03 1 04 + 05 STO 00 06 RCL 02 07 X<>Y 08 / 09 ENTER 10 STO 04 11 RCL 01 12 - 13 STO 12 14 * 15 RCL 03 16 RCL 02 17 - 18 STO 11 19 * 20 RCL 01 21 RCL 03 |
22 + 23 STO 06 24 STO 10 25 RCL 02 26 + 27 STO 08 28 * 29 SQRT 30 RCL 02 31 RCL 02 32 RCL 01 33 - 34 STO 05 35 * 36 RCL 03 37 RCL 04 38 ST+ 06 39 - 40 ST* 08 41 * 42 RCL 06 |
43 ST* 11 44 * 45 SQRT 46 + 47 RCL 02 48 RCL 04 49 - 50 STO 07 51 / 52 X^2 53 STO 09 54 RCL 04 55 RCL 11 56 * 57 RCL 05 58 * 59 SQRT 60 RCL 02 61 RCL 08 62 * 63 RCL 12 |
64 ST* 11 65 * 66 SQRT 67 + 68 RCL 07 69 / 70 X^2 71 X<> 08 72 RCL 04 73 * 74 RCL 05 75 * 76 SQRT 77 RCL 02 78 ST* 04 79 RCL 11 80 * 81 SQRT 82 + 83 RCL 07 84 / |
85 X^2 86 STO 07 87 RCL 01 88 RCL 10 89 * 90 - 91 STO 05 92 RCL 07 93 RCL 08 94 RCL 09 95 RJ 96 RCL 01 97 RCL 03 98 * 99 RCL 10 100 * 101 * 102 3 103 / 104 X<> 05 105 RCL 04 |
106 STO Z 107 - 108 / 109 SQRT 110 ATAN 111 D-R 112 RCL 05 113 - 114 STO 04 115 RCL 07 116 RCL 08 117 RCL 09 118 RF 119 STO 05 120 RCL 03 121 RCL 10 122 * 123 RCL 01 124 X^2 125 + 126 SQRT |
127 ST+ X 128 ST* 04 129 ST* 05 130 RCL 05 131 E^X-1 132 LASTX 133 CHS 134 E^X-1 135 - 136 2 137 / 138 RCL 00 139 * 140 RCL 02 141 ST* 05 142 * 143 STO 06 144 RCL 05 145 RCL 04 146 END |
( 168 bytes / SIZE 0123)
STACK | INPUTS | OUTPUTS |
Z |
/ |
DL |
Y |
/ |
D0 |
X |
z |
D |
Example: Rmin = 1 R0 = 14 Rmax = 314 ( Gygalightyears ) , z = 7
1 STO 01
14 STO 02
314 STO 03
7 XEQ "Z-D" >>>> D = 13.56149794 Gly ---Execution time = 21s---
RDN D0 = 33.91425300 Gly
RDN DL = 626.3433837 Gly-
f) Tolman Universes ( 4 programs )
-Here, (Omega)mat = 0
-This program computes D , T , R0 , & k
Data Registers: R00-R06: temp
Flags: /
Subroutines: /
01 LBL "Z-D" 02 R^ 03 1/X 04 STO 06 05 SIGN 06 + 07 X^2 08 1/X 09 STO 00 10 SIGN 11 X<>Y 12 STO 01 13 - 14 X<>Y 15 STO 02 16 - |
17 STO 03 18 X#0? 19 SIGN 20 CHS 21 RCL 03 22 RCL 01 23 ST+ X 24 / 25 STO 04 26 977.7922214 27 ST* 06 28 SIGN 29 + 30 RCL 01 31 SQRT 32 1/X |
33 + 34 STO 05 35 RCL 00 36 RCL 03 37 * 38 RCL 02 39 + 40 RCL 01 41 / 42 RCL 00 43 X^2 44 + 45 SQRT 46 RCL 04 47 + 48 RCL 00 |
49 + 50 / 51 SQRT 52 LN 53 X<> 05 54 RCL 02 55 RCL 01 56 / 57 SQRT 58 RCL 04 59 + 60 / 61 SQRT 62 LN 63 RCL 01 64 SQRT |
65 ST/ 05 66 / 67 RCL 03 68 ABS 69 X=0? 70 SIGN 71 SQRT 72 1/X 73 X<>Y 74 RCL 06 75 ST* 05 76 ST* Z 77 * 78 RCL 05 79 END |
( 103 bytes / SIZE 007 )
STACK | INPUTS | OUTPUTS |
T |
H0 |
k |
Z |
(Omega)rad >=0 |
R0 |
Y | (Omega)lambda
> 0 |
T |
X |
z |
D |
Example1: H0 = 68 km/s/Mpc (Omega)rad = 0.000049 (Omega)lambda = 0.314 z = 7
68 ENTER^
0.000049 ENTER^
0.314 ENTER^
7 XEQ "Z-D" >>>> D = 14.08131707 Gly ---Execution time = 3.7s---
RDN T = 16.10720928 Gy
RDN R0 = 17.36165485 Gly
RDN k = -1
Example2: H0 = 68 km/s/Mpc (Omega)rad = 0.3 (Omega)lambda = 0.7 z = 7
68 ENTER^
0.3 ENTER^
0.7 ENTER^
7 XEQ "Z-D" >>>> D = 10.19222258 Gly
RDN T = 10.39730378 Gy
RDN R0 = 14.37929737 Gly
RDN k = 0
Example3: H0 = 68 km/s/Mpc (Omega)rad = 0.4 (Omega)lambda = 0.8 z = 7
68 ENTER^
0.4 ENTER^
0.8 ENTER^
7 XEQ "Z-D" >>>> D = 9.715222804 Gly
RDN T = 9.893178897 Gy
RDN R0 = 32.15308638 Gly
RDN k = +1
-A more general version:
Data Registers: R00 = k ( -1 , 0 , +1 )
R01 = D
R04 = Rmin
R07 to R13: temp
R02 = T
R05 = R0
R14 = H0
R03 = P
R06 = Rmax
Flag: F24
Subroutines: /
01 LBL "TOL" 02 DEG 03 R^ 04 STO 14 05 SIGN 06 + 07 X^2 08 1/X 09 STO 12 10 RDN 11 STO 13 12 X<>Y 13 STO 07 14 + 15 90 16 TAN 17 STO 03 18 STO 06 19 STO 09 20 CLX 21 STO 04 22 SIGN 23 - 24 STO 00 25 CHS 26 RCL 13 27 X=0? 28 SIGN 29 ST/ 07 30 / 31 STO 08 32 RCL 13 33 X=0? 34 GTO 01 35 ABS 36 SQRT 37 ST+ X 38 STO 10 39 CLX 40 2 41 / |
42 STO 08 43 X^2 44 RCL 07 45 - 46 X<0? 47 GTO 02 48 SQRT 49 RCL 08 50 SIGN 51 * 52 RCL 08 53 + 54 CHS 55 RCL 07 56 RCL Y 57 X=0? 58 SIGN 59 / 60 X<0? 61 CLX 62 SQRT 63 X<>Y 64 X<0? 65 CLX 66 SQRT 67 X<Y? 68 X<>Y 69 GTO 03 70 LBL 01 71 RCL 07 72 CHS 73 RCL 08 74 X=0? 75 GTO 02 76 / 77 X<0? 78 CLX 79 SQRT 80 ENTER 81 GTO 03 82 LBL 02 |
83 CLST 84 LBL 03 85 1 86 X<>Y 87 X>Y? 88 STO 06 89 X<> Z 90 X>Y? 91 STO 06 92 X>0? 93 X>Y? 94 FS? 30 95 STO 04 96 X<> Z 97 X>0? 98 X>Y? 99 FS? 30 100 STO 04 101 RCL 13 102 X=0? 103 GTO 01 104 X<0? 105 GTO 02 106 RCL 07 107 RCL 08 108 ST+ X 109 + 110 1 111 + 112 SQRT 113 1 114 + 115 RCL 08 116 + 117 STO 11 118 LASTX 119 RCL 07 120 X<0? 121 CLX 122 SQRT 123 + |
124 X=0? 125 GTO 00 126 STO 05 127 / 128 ABS 129 LN 130 RCL 10 131 / 132 STO 02 133 RCL 11 134 RCL 08 135 ST+ X 136 RCL 12 137 ST* Y 138 X^2 139 + 140 RCL 07 141 + 142 SQRT 143 RCL 08 144 + 145 RCL 12 146 + 147 / 148 ABS 149 LN 150 RCL 10 151 / 152 STO 01 153 RCL 09 154 RCL 06 155 X=Y? 156 GTO 03 157 X^2 158 RCL 08 159 + 160 RCL 05 161 / 162 ABS 163 LN 164 ST+ X |
165 RCL 10 166 / 167 STO 03 168 GTO 03 169 LBL 00 170 RCL 09 171 STO 02 172 GTO 03 173 LBL 01 174 1 175 RCL 07 176 X<0? 177 CLX 178 SQRT 179 STO 05 180 - 181 RCL 08 182 X=0? 183 GTO 04 184 / 185 STO 02 186 1 187 RCL 08 188 RCL 12 189 * 190 RCL 07 191 + 192 SQRT 193 - 194 RCL 08 195 / 196 STO 01 197 RCL 09 198 RCL 06 199 X=Y? 200 GTO 03 201 X^2 202 RCL 08 203 * 204 RCL 07 205 + |
206 SQRT 207 RCL 05 208 - 209 ST+ X 210 RCL 08 211 / 212 STO 03 213 GTO 03 214 LBL 02 215 1 216 RCL 08 217 ST+ Y 218 X^2 219 RCL 07 220 - 221 SQRT 222 STO 01 223 / 224 ASIN 225 STO 09 226 90 227 + 228 D-R 229 RCL 10 230 / 231 STO 02 232 RCL 09 233 RCL 08 234 RCL 12 235 + 236 RCL 01 237 / 238 ASIN 239 - 240 D-R 241 RCL 10 242 / 243 STO 01 244 PI 245 ST+ X 246 RCL 10 |
247 / 248 STO 03 249 GTO 03 250 LBL 04 251 .5 252 ENTER 253 STO 02 254 RCL 12 255 * 256 - 257 STO 01 258 LBL 03 259 RCL 00 260 X#0? 261 SIGN 262 ENTER 263 X<> 00 264 ABS 265 SQRT 266 X=0? 267 SIGN 268 1/X 269 SF 24 270 977.7922214 271 RCL 14 272 / 273 ST* 01 274 ST* 02 275 ST* 03 276 * 277 STO 05 278 ST* 04 279 ST* 06 280 RCL 02 281 RCL 03 282 SIGN 283 CLX 284 RCL 01 285 CF 24 286 END |
( 344 bytes
/ SIZE 015 )
STACK | INPUTS | OUTPUTS |
T | H0 | k |
Z | (Omega)rad | R0 |
Y | (Omega)lambda | T |
X | z | D |
L | / | P |
Example1: With H0 = 68 km/s/Mpc (Omega)rad = -0.0001 , (Omega)lambda = -0.1 , z = 7
68 ENTER^
-0.0001 ENTER^
-0.1 ENTER^
7 XEQ "TOL" >>>> D = 12.21653956 Gly = R01 ---Execution time = 6.7s---
RDN T = 13.92565130 Gy = R02
RDN R0 = 13.70949896 Gly = R05
RDN k = -1 = R00
LASTX P = 142.8523990 Gy = R03
And we also have:
R04 = Rmin = 0.130709543 Gly
R06 = Rmax = 45.47114300 Gly
Example2: H0 = 68 km/s/Mpc (Omega)rad = 0.1 , (Omega)lambda = 0.6 , z = 7
68 ENTER^
0.1 ENTER^
0.6 ENTER^
7 XEQ "TOL" >>>> D = 12.18609378 Gly = R01
RDN T = 12.53718802 Gy = R02
RDN R0 = 26.25288510 Gly = R05
RDN k = -1 = R00
LASTX P = 9.9999999 99 Gy = R03 ( infinite )
And we also have:
R04 = Rmin = 0.000000000 Gly
R06 = Rmax = 9.9999999 99 Gly ( infinite )
Example3: H0 = 68 km/s/Mpc (Omega)rad = 1.1 , (Omega)lambda = 0 , z = 7
68 ENTER^
1.1 ENTER^
0 ENTER^
7 XEQ "TOL" >>>> D = 6.911221056 Gly = R01
RDN T = 7.018369397 Gy = R02
RDN R0 = 45.47133084 Gly = R05
RDN k = +1 = R00
LASTX P = 301.6226862 Gy = R03
And we also have:
R04 = Rmin = 0.000000000 Gly
R06 = Rmax = 150.8113431 Gly
-We can use the program listed in §6°)a) to compute D0 & DL
-Here is another program with Gauss-Legendre 3-point formula:
Data Registers: • R00 = N ( Registers R00-R01-R02-R03 are to be initialized before executing "Z-D" )
• R01 = H0 R04 to R10: temp
• R02 = (Omega)lambda > 0
• R03 = (Omega)rad > 0 0 < 1 - (Omega)lambda - (Omega)rad < 1
Flags: /
Subroutines: /
01 LBL "Z-D" 02 1 03 + 04 1/X 05 STO 04 06 1 07 RCL 02 08 - 09 RCL 03 10 - 11 STO 05 12 1 13 RCL 04 14 STO 07 15 - 16 RCL 00 17 STO 08 18 / 19 STO 06 20 2 21 / 22 ST+ 07 23 .6 24 SQRT 25 * 26 STO 09 |
27 CLX 28 STO 10 29 GTO 01 30 LBL 00 31 X^2 32 STO Y 33 RCL 02 34 * 35 RCL 05 36 + 37 * 38 RCL 03 39 + 40 SQRT 41 1/X 42 RTN 43 LBL 01 44 RCL 07 45 RCL 09 46 - 47 XEQ 00 48 ST+ 10 49 RCL 07 50 XEQ 00 51 1.6 52 * |
53 ST+ 10 54 RCL 07 55 RCL 09 56 + 57 XEQ 00 58 ST+ 10 59 RCL 06 60 ST+ 07 61 DSE 08 62 GTO 01 63 RCL 10 64 * 65 3.6 66 / 67 STO 07 68 RCL 05 69 RCL 02 70 ST+ X 71 / 72 STO 06 73 1 74 + 75 X^2 76 RCL 03 77 RCL 02 78 / |
79 RCL 06 80 X^2 81 - 82 STO 08 83 + 84 SQRT 85 1 86 + 87 RCL 04 88 X^2 89 STO 09 90 RCL 06 91 + 92 X^2 93 RCL 08 94 + 95 SQRT 96 RCL 06 97 ST+ Z 98 + 99 RCL 09 100 + 101 / 102 LN 103 RCL 02 104 SQRT |
105 ST+ X 106 / 107 STO 06 108 RCL 07 109 RCL 05 110 SQRT 111 STO 05 112 * 113 E^X-1 114 LASTX 115 CHS 116 E^X-1 117 - 118 RCL 04 119 ST+ X 120 / 121 RCL 05 122 / 123 977.7922214 124 RCL 01 125 / 126 ST* 06 127 ST* 07 128 * 129 RCL 07 130 RCL 06 131 END |
( 175 bytes / SIZE 011 )
STACK | INPUTS | OUTPUTS |
Z |
/ |
DL |
Y |
/ |
D0 |
X |
z |
D |
Example: H0 = 68 km/s/Mpc (Omega)lambda = 0.7 (Omega)rad = 0.1 z = 7
-With N = 10
10 STO 00
68 STO 01
0.7 STO 02
0.1 STO 03
7 XEQ "Z-D" >>>> D = 12.55193503 Gly ---Execution time = 26s---
RDN D0 = 26.16037018 Gly
RDN DL = 233.1494318 Gly
-In most cases, we cannot calculate D0 with elementary functions.
-But if (Omega)rad = 1 + (Omega)lambda - 2 sqrt (Omega)lambda , it becomes possible !
-Here is such a program:
Data Registers: R00-R07: temp
Flags: /
Subroutines: /
01 LBL "Z-D" 02 DEG 03 1 04 + 05 1/X 06 STO 00 07 RDN 08 STO 01 09 ENTER 10 SQRT 11 STO 04 12 ST+ X 13 STO 05 14 - 15 1 16 + |
17 STO 02 18 X<>Y 19 STO 06 20 RCL 04 21 1/X 22 1 23 - 24 STO 03 25 2 26 + 27 RCL 00 28 X^2 29 RCL 03 30 ST+ Z 31 + 32 ST+ X |
33 / 34 LN 35 RCL 05 36 / 37 STO 05 38 RCL 03 39 SQRT 40 1/X 41 ATAN 42 RCL 00 43 LASTX 44 * 45 ATAN 46 - 47 D-R 48 RCL 01 |
49 ST- 04 50 RCL 03 51 * 52 SQRT 53 / 54 STO 07 55 RCL 04 56 ST+ X 57 SQRT 58 STO 04 59 * 60 E^X-1 61 LASTX 62 CHS 63 E^X-1 64 - |
65 RCL 00 66 ST+ X 67 RCL 04 68 * 69 / 70 977.7922214 71 RCL 06 72 / 73 ST* 05 74 ST* 07 75 * 76 RCL 02 77 X<>Y 78 RCL 07 79 RCL 05 80 END |
( 106 bytes / SIZE 008 )
STACK | INPUTS | OUTPUTS |
T |
/ |
(Omega)rad |
Z |
H0 |
DL |
Y | 0 < (Omega)lambda
< 1 |
D0 |
X |
z |
D |
Example: H0 = 68 km/s/Mpc (Omega)lambda = 0.16 z = 7
68 ENTER^
0.16 ENTER^
7 XEQ "Z-D" >>>> D = 8.995379940 Gly ---Execution time = 4.6s---
RDN D0 = 17.11226659 Gly
RDN DL = 152.9445025 Gly
RDN (Omega)rad = 0.36
f) Milne Universes
-Here, (Omega)mat = (Omega)lambda = (Omega)rad = 0 & k = -1
Data Registers: R00: temp
Flags: /
Subroutines: /
01 LBL "MLN" 02 RCL X 03 977.7922214 04 R^ 05 / 06 STO 00 07 SIGN 08 + 09 ST/ Y 10 LASTX 11 + 12 2 13 / 14 R^ 15 ST* Y 16 LN1+X 17 RCL 00 18 ST* Z 19 ST* T 20 X<>Y 21 ST* Y 22 X<> T 23 END |
( 48 bytes / SIZE 001 )
STACK | INPUTS | OUTPUTS |
T |
/ |
VR |
Z |
/ |
DL |
Y |
H0 |
D0 |
X |
z |
D |
L |
/ |
z |
Example: H0 = 71 km/s/Mpc , z = 7
71 ENTER^
7 XEQ "MLN" >>>> D = 12.05025625 Gly ---Execution time = 1.2s---
RDN D0 = 28.63748965 Gly
RDN DL = 433.8092250 Gly
RDN VR = 2.079441542 = recessional velocity ( speed of light = 1 )
References:
[1] B. C. Carlson - "A Table of Elliptic Integrals of the Third Kind"
[2] Abramowitz and Stegun - "Handbook of Mathematical Functions" - Dover Publications - ISBN 0-486-61272-4
[3] B. C. Carlson - "A Table of Elliptic Integrals: two quadratic factors"