hp41programs

COSMO2

Cosmology(II) for the HP-41


Overview
 

 1°)  Empty Universes
 2°)  Einstein's & Godel's Universes
 3°)  Oscillating Universes
 4°)  Tolman Universes
 5°)  Other Cyclic Universes without Singularity
 
 
 

1°) Empty Universes
 

-This program summarizes several routines listed in "General Relativity & Cosmology" ( cf this page for the formulae )

-Given the cosmological parameter Lambda = L0  and the the redshift z of a galaxy or a quasar , "CSM" computes

   D  = light-time distance                          t0 = Age of the Universe                  R0  = Radius of the Universe                            k = +1  for spherical Universes
   D0 = comoving radial distance               P = Period of the Universe              Rmin = minimum radius of the universe               k =  0   for Euclidean Universes
   DL = luminosity-distance                                                                              Rmax = maximum radius of the universe             k = -1   for hyperbolic Universes

   and the recessional velocity VR  ( speed of light = 1 )

-All the distances are expressed in light-years
-All the times are expressed in years
 

Remark:
 

-The Hubble's constant has been chosen such that:    1 / H0 = 1.377 E10  years ( line 227 )
-Change this line if you want to use another value.
 

Data Registers:             R00 = VR  ( c = 1 )

                                        R01 = D               R04 = t0             R06 = R0               R09 = k ( -1 , 0 , +1 )
                                        R02 = D0             R05 = P             R07 = Rmin
                                        R03 = DL                                       R08 = Rmax

                                     ( R10 = z    R11 = z + 1    R12 = L0    R13 & R14: temp )
Flag:  F24
Subroutines: /
 

-Lines 66 and 84 are three-byte GTO 04
 
 

  01  LBL "CSM"
  02  DEG
  03  STO 10 
  04  1
  05  +
  06  STO 11
  07  X<>Y
  08  STO 12
  09  1
  10  -
  11  STO 04 
  12  RCL 12 
  13  X=0?
  14  SIGN
  15  /
  16  ABS
  17  SQRT
  18  STO 13
  19  *
  20  STO 14
  21  CLX
  22  STO 05
  23  STO 07
  24  90 
  25  TAN
  26  STO 08
  27  SIGN
  28  CHS
  29  STO 09       
  30  RCL 12
  31  ABS
  32  SQRT
  33  X=0?
  34  SIGN
  35  1/X
  36  STO 01
  37  X<> 04
  38  ABS
  39  SQRT
  40  X=0?
  41  SIGN
  42  1/X
  43  STO 00 
  44  STO 02
  45  STO 03
  46  STO 06 
  47  SIGN
  48  RCL 12
  49  X#0?
  50  GTO 00
  51  RCL 10
  52  RCL 11
  53  1
  54  +
  55  *
  56  2
  57  / 
  58  STO 03
  59  RCL 11 
  60  LN
  61  STO 00
  62  STO 02 
  63  RCL 10
  64  RCL 11       
  65  / 
  66  GTO 04
  67  LBL 00
  68  X<0?
  69  GTO 01
  70  X#Y?
  71  GTO 02
  72  CLX
  73  STO 09
  74  RCL 10
  75  STO 00 
  76  STO 02
  77  RCL 11 
  78  *
  79  STO 03
  80  RCL 08
  81  STO 04 
  82  LASTX
  83  LN
  84  GTO 04
  85  LBL 01
  86  PI
  87  RCL 01
  88  *
  89  STO 05 
  90  RCL 06 
  91  RCL 13
  92  *
  93  STO 08
  94  RCL 14
  95  ENTER
  96  X^2
  97  1
  98  -
  99  SQRT
100  +
101  RCL 13      
102  ENTER
103  X^2
104  1
105  -
106  SQRT
107  +
108  /
109  LN
110  ST* 00
111  ST* 02
112  E^X-1
113  LASTX
114  CHS
115  E^X-1
116  -
117  2
118  /
119  RCL 11 
120  *
121  ST* 03
122  RCL 13
123  1/X
124  ASIN
125  D-R
126  ST* 04
127  RCL 14      
128  1/X
129  ASIN
130  D-R
131  -
132  GTO 04
133  LBL 02
134  X>Y?
135  GTO 03
136  RCL 14
137  ENTER
138  X^2
139  1
140  +
141  SQRT
142  +
143  RCL 13 
144  ENTER
145  X^2
146  1
147  +
148  SQRT
149  +
150  /
151  LN
152  ST* 00
153  ST* 02
154  E^X-1
155  LASTX
156  CHS
157  E^X-1
158  -
159  2
160  /
161  RCL 11      
162  *
163  ST* 03
164  RCL 13
165  1/X
166  ENTER
167  X^2
168  1
169  +
170  SQRT
171  +
172  LN
173  ST* 04
174  RCL 14
175  1/X
176  ENTER
177  X^2
178  1
179  +
180  SQRT
181  +
182  LN
183  -
184  GTO 04
185  LBL 03
186  X<>Y
187  STO 09 
188  RCL 13
189  ACOS
190  RCL 14
191  ACOS
192  -
193  D-R
194  ST* 00
195  ST* 02
196  LASTX
197  SIN
198  RCL 11      
199  *
200  ST* 03
201  RCL 06
202  RCL 13
203  *
204  STO 07
205  LASTX
206  1/X
207  ENTER
208  X^2
209  1
210  -
211  SQRT
212  +
213  LN
214  ST* 04
215  RCL 14 
216  1/X
217  ENTER
218  X^2
219  1
220  -
221  SQRT
222  +
223  LN
224  -
225  LBL 04
226  SF 24
227  1377 E7
228  ST* 02
229  ST* 03
230  ST* 04
231  ST* 05
232  ST* 06
233  ST* 07
234  ST* 08
235  *
236  ST* 01
237  CF 24
238  RCL 09      
239  RCL 06
240  RCL 04
241  RCL 01
242  END

 
     ( 289 bytes / SIZE 015 )
 
 

      STACK        INPUTS      OUTPUTS
           T             /           k
           Z             /           R0
           Y           L0            t0
           X            z            D

 
Example:     With   z = 7  , here are the results given for 5 L-values   ( except  z = 0.3 if  L0 = 1.4 )
 
 
 

       L0      -0.4         0     +0.4         1       1.4      units   Registers
       D    1.0823    1.2049    1.4013    2.8634    0.3877    x E10      R01
       D0    2.5125    2.8634    3.4598    9.6390    0.4448    x E10      R02
       DL    3.9784    4.3376    4.8774    7.7112    0.5743    x E11      R03
       t0    1.2278     1.3770    1.6231     infinity    1.4419    x E10      R04
       P    6.8400        0        0        0         0    x E10      R05
       R0    1.1638    1.3770    1.7777    1.3770    2.1772    x E10      R06
      Rmin        0        0        0        0    1.1638    x E10      R07
      Rmax    2.1772    infinity    infinity    infinity    infinity    x E10      R08
       k       -1       -1       -1        0       +1      x 1      R09
      VR     1.8246    2.0794    2.5125        7    0.3230      x 1      R00

 
Notes:

-"CSM" always stops at the last line.
-"infinity" is actually displayed 9.999999999 E99

-The period P only exists if the cosmological parameter L0 is negative
-The maximum radius Rmax is finite only if L0 < 0.  In this case, we have a pulsating Universe with a big bang & a big crunch

-The minimum radius Rmin is positive ( > 0 ) only if L0 > 1
 

->  t0   P   R0   Rmin    Rmax   and  k  are of course independant from z
 

2°) Einstein's & Gödel's Universes
 

-The first version of Einstein's Universe was a static Spherical Universe.
-The radius R of the Universe is related to the cosmological constant Lambda and the mean density (rho) by

      Lambda = 4 Pi G (rho) / c2                            where  G  is the gravitational constant
           R      = 1 / SQRT(Lambda)                         and    c  is the speed of light

-K. Gödel found a rotating - but non expanding - Universe where the metric is defined by

     ds2 = a2 [ ( dx0 + exp x1 dx2 )2 - ( dx1 )2 - (1/2) exp 2.x1 ( dx2 )2 - ( dx3 )2 ]      where  a  is a constant

-Assuming the pressure p = 0 , Einstein's equations lead to

      Lambda = -1 / ( 2.a2 )  = - 4 Pi G (rho) / c2    and the period T of rotation of the matter is given by
           T      =  2 Pi / omega  with  omega = [ 4 Pi G (rho) ]1/2

-"EINGD" takes the mean density (rho) and returns the main constants above
 

Data Registers: /

Flag:  F01   CF 01 =  Einstein's Universe
                    SF 01  =  Gôdel's Universe

Subroutines: /
 
 

 01  LBL "EINGD"
 02  STO M
 03  21156
 04  *
 05  ABS
 06  SQRT
 07  1/X
 08  FS? 01
 09  GTO 00
 10  DEG
 11  90
 12  TAN
 13  LBL 00
 14  RCL M
 15  835206
 16  *
 17  FS? 01
 18  CHS
 19  ENTER^
 20  ABS
 21  FS? 01
 22  ST+ X
 23  SQRT
 24  1/X
 25  0
 26  X<> M
 27  SIGN
 28  RDN
 29  END

 
( 57 bytes / SIZE 000 )
 
 

       STACK         INPUT  CF01 OUTPUTS SF01 OUTPUTS
            T             /         k = +/-1        k = +/-1
            Z             /              T             T
            Y             /         Lambda         Lambda
            X      rho ( kg/m3 )              R             a
            L             /             rho            rho

                    R  is expressed in light-years
  Where   Lambda is expressed in (light-years) -2             k = +1 for a spherical Universe or -1 for a hyperbolic Universe
                    T  is expressed  in years

Example:   If  rho =  3.14 10 -28 kg/m3

     •  Einstein's Universe CF 01

        CF 01
     3.14 E-28  XEQ "EINGD"  >>>>    R   =  6.1750  E10   l-y
                                                RDN   Lam =  2.6225 E-22 (l-y) -2
                                                RDN     T   =  9.9999  E99  years   ( no rotation )
                                                RDN     k   =  +1
 

     •  Gödel's Universe SF 01

        SF 01
     3.14 E-28  XEQ "EINGD"  >>>>    a   =   4.3664  E10   l-y
                                                RDN   Lam =  -2.6225 E-22 (l-y) -2
                                                RDN     T   =   3.8799  E11  years   ( period )
                                                RDN     k   =  +1

Notes:

-Though it's probably not realistic, "EINGD" may also be used with a negative density, for example:

       CF 01
   -3.14 E-28  XEQ "EINGD"  >>>>    R   =    6.1750  E10   l-y
                                                RDN   Lam =  -2.6225 E-22 (l-y) -2
                                                RDN     T   =  9.9999  E99  years   ( no rotation )
                                                RDN     k   =  -1

-With rho < 0 , Einstein's Universe becomes hyperbolic and stable

-David F. Crawford has created an alternative cosmology, "Curvature Cosmology" where a static spherical Universe is stable too !
-It's a tired-light model. ( cf reference [3] )
 

3°)  Oscillating Universes
 

-This program supposes that there is only a negative cosmological parameter Lambda and a radiation parameter ¶ ( matter-density = 0 )
-Though it's "probably" not realistic, it gives examples of pulsating universes without any singularity.

-As before, Einstein's equations are used.
 
 

Data Registers:             R00 = k  ( -1 , 0 , +1 )

                                        R01 = D             R04 = R0             R07 = zmin < 0              R10 = Lambda < 0
                                        R02 = t0             R05 = Rmin         R08 = zmax                     R11 = ¶
                                        R03 = P             R06 = Rmax         R09 = z                          R12 = ¶ / Lambda
Flags: /
Subroutines: /
 
 

  01  LBL "PULSE"
  02  DEG
  03  STO 09        
  04  X<> Z
  05  STO 11 
  06  X<>Y
  07  STO 10 
  08  /
  09  STO 12
  10  LASTX
  11  RCL 11
  12  +
  13  1
  14  -
  15  STO 00
  16  RCL 10
  17  ST+ X
  18  /
  19  CHS
  20  STO 04
  21  CHS
  22  ENTER
  23  X^2
  24  RCL 12
  25  -
  26  SQRT
  27  RCL Y
  28  SIGN
  29  *
  30  +
  31  X#0?
  32  ST/ Y
  33  X<0?
  34  CLX
  35  X<>Y
  36  X<0?
  37  CLX
  38  X>Y?
  39  X<>Y
  40  SQRT
  41  STO 05        
  42  X=0?
  43  GTO 00
  44  1/X
  45  1
  46  -
  47  GTO 01
  48  LBL 00
  49  CLX
  50  90
  51  TAN
  52  LBL 01
  53  X<>Y
  54  SQRT
  55  STO 06 
  56  1/X
  57  1 
  58  -
  59  X>Y?
  60  X<>Y
  61  STO 07
  62  X<>Y
  63  STO 08
  64  1
  65  STO Y
  66  RCL 04
  67  ST+ Y
  68  X^2
  69  RCL 12 
  70  -
  71  SQRT
  72  STO 03        
  73  /
  74  ASIN
  75  RCL 04
  76  RCL 09
  77  1
  78  +
  79  X^2
  80  1/X
  81  +
  82  RCL 03
  83  /
  84  ASIN
  85  -
  86  D-R
  87  X<>Y
  88  RCL 05 
  89  X>0?
  90  GTO 00
  91  CLX
  92  RCL 08
  93  1
  94  +
  95  1/X
  96  X^2
  97  RCL 04
  98  +
  99  RCL 03        
100  /
101  ASIN
102  GTO 01
103  LBL 00
104  CLX
105  90
106  CHS
107  LBL 01
108  STO 03
109  -
110  D-R
111  90
112  RCL 03
113  -
114  D-R
115  ST+ X
116  STO 03
117  CLX
118  RCL 00 
119  X#0?
120  SIGN
121  X<> 00
122  ABS
123  SQRT
124  X=0?
125  SIGN
126  1/X
127  STO 04       
128  ST* 05
129  ST* 06
130  X<> Z
131  RCL 10 
132  CHS
133  SQRT
134  ST+ X
135  ST/ 03
136  ST/ Z
137  /
138  1377 E7
139  ST* 03
140  ST* 04
141  ST* 05
142  ST* 06
143  ST* T
144  ST* Z
145  *
146  STO 01
147  X<>Y
148  STO 02
149  X<>Y
150  RCL 03 
151  SIGN
152  CLX
153  RCL 00
154  RDN
155  END

 
         ( 197 bytes / SIZE 013 )
 
 

      STACK        INPUTS      OUTPUTS
           T             /           k
           Z           ¶0           R0
           Y        L0 < 0            t0
           X            z            D
           L            /            P

  where the distances are expressed in light-years and the times in years

Example:    With   ¶0 = -0.0001  ,   L0 = -0.1  ,  z = 10

      -0.0001  ENTER^
         -0.1     ENTER^
           10     XEQ "PULSE"   >>>>   D  = 1.2148    E10  l-y     = R01
                                               RDN    t0 =  1.3336   E10  years = R02
                                               RDN   R0 =  1.3129   E10  L-y   = R04
                                               RDN    k  =   -1                          = R00
                                            LASTX   P  =  1.3680   E11 years = R03

 And we also have:

    R05 =  Rmin =  1.2517   E08  l-y
    R06 =  Rmax =  4.3544   E10 l-y
    R07 =  zmin  =  -0.6985
    R08 =  zmax  =  103.8852

-So, this universe is hyperbolic and its radius oscillates between  Rmin =  1.2517   E08  l-y  and  Rmax =  4.3544   E10 l-y
-The period between 2 minima or 2 maxima is P  =  1.3680   E11 years
 

  R
   |
   |                    *                                        *
   |              *          *                           *            *
   |           *                *                     *                  *
   |       *                       *               *                        *
   |*                                      *                                        *
   |-------------------------- P--------------------------2P---------------------------- t 


-The program may be simplified if   L0  &  ¶0  are negative:

 
Data Registers:             R00 = D
                                        R01 = t0             R03 = R0            R05 = Rmax
                                        R02 = P             R04 = Rmin         R06-R07: temp
Flags: /
Subroutines: /

 
 

 01 LBL "CSM"
 02 DEG
 03 1
 04 +
 05 X^2
 06 STO 00          
 07 SIGN
 08 X<>Y
 09 STO 03
 10 ST+ Z
 11 -
 12 X<>Y
 13 STO 06
 14 -
 15 STO 07
 16 RCL 03
 17 ST/ 06
 18 ST+ X
 19 /
 20 STO 04          
 21 1
 22 X<>Y
 23 ST+ Y
 24 X^2
 25 RCL 06
 26 -
 27 SQRT
 28 STO 05
 29 /
 30 ASIN
 31 D-R
 32 STO 01
 33 RCL 00
 34 1/X
 35 RCL 04          
 36 +
 37 RCL 05
 38 /
 39 ASIN
 40 D-R
 41 -
 42 STO 00
 43 PI
 44 STO 02
 45 2
 46 /
 47 ST+ 01
 48 RCL 03
 49 CHS
 50 SQRT
 51 ST/ 02
 52 ST+ X
 53 ST/ 00
 54 ST/ 01
 55 1377 E7
 56 ST* 00
 57 ST* 01
 58 ST* 02
 59 RCL 07          
 60 SQRT
 61 /
 62 STO 03
 63 RCL 06
 64 SQRT
 65 RCL 05
 66 RCL 04
 67 -
 68 SQRT
 69 STO 05
 70 /
 71 RCL 03
 72 ST* 05
 73 *
 74 STO 04          
 75 LASTX
 76 RCL 02
 77 RCL 01
 78 RCL 00
 79 END

 
         ( 105 bytes / SIZE 008 )
 
 

           STACK           INPUTS         OUTPUTS
               T                /              R0 
               Z               q              P
               Y           L0 < 0              t0  
               X               z              D

  where the distances are expressed in light-years and the times in years

Example:     q = -0.007    L0 = - 0.003    z = 7

     -0.007  ENTER^
     -0.003  ENTER^
          7      XEQ "CSM"   >>>>    D = 1.2583  E10  L-y   = R00                                      ---Execution time = 4.5s---
                                         RDN     t0 =  1.3621 E10  years = R01
                                         RDN     P =  7.8981 E11  years = R02
                                         RDN    R0 = 1.3681 E10  L-y   = R03

  and   R04 = Rmin =  1.3593 E09  L-y   &   R05 = Rmax =  2.5140 E11  L-y

Notes:

  q = deceleration parameter and radiation parameter   ¶ = q + L0  

-If you prefer   ¶  in Z-register, simply delete line 10  ( ST+ Z )

-You can also compute zmax = -1 + R0 / Rmin  
-In the above example,  zmax = 9.0646

-Such Universes are hyperbolic ( k = -1 )

 

4°)  Tolman Universes
 

-Here,  (Omega)mat = 0
 

Data Registers:             R00 = k  ( -1 , 0 , +1 )

                                        R01 = D             R04 = Rmin             R07 to R13: temp
                                        R02 = t0             R05 = R0
                                        R03 = P             R06 = Rmax
Flag:  F24
Subroutines: /
 
 
 

 01 LBL "TOL"
 02 DEG
 03 1
 04 +
 05 X^2
 06 1/X
 07 STO 12
 08 RDN
 09 STO 13
 10 X<>Y
 11 STO 07
 12 +
 13 90
 14 TAN
 15 STO 03
 16 STO 06
 17 STO 09
 18 CLX
 19 STO 04
 20 SIGN
 21 -
 22 STO 00
 23 CHS
 24 RCL 13
 25 X=0?
 26 SIGN
 27 ST/ 07
 28 /
 29 STO 08
 30 RCL 13
 31 X=0?
 32 GTO 01
 33 ABS
 34 SQRT
 35 ST+ X
 36 STO 10        
 37 CLX
 38 2
 39 /
 40 STO 08
 41 X^2
 42 RCL 07
 43 -
 44 X<0?
 45 GTO 02
 46 SQRT
 47 RCL 08
 48 SIGN
 49 *
 50 RCL 08
 51 +
 52 CHS
 53 RCL 07
 54 RCL Y
 55 X=0?
 56 SIGN
 57 /
 58 X<0?
 59 CLX
 60 SQRT
 61 X<>Y
 62 X<0?
 63 CLX
 64 SQRT
 65 X<Y?
 66 X<>Y
 67 GTO 03
 68 LBL 01
 69 RCL 07
 70 CHS
 71 RCL 08        
 72 X=0?
 73 GTO 02
 74 /
 75 X<0?
 76 CLX
 77 SQRT
 78 ENTER
 79 GTO 03
 80 LBL 02
 81 CLST
 82 LBL 03
 83 1
 84 X<>Y
 85 X>Y?
 86 STO 06
 87 X<> Z
 88 X>Y?
 89 STO 06
 90 X>0?
 91 X>Y?
 92 FS? 30
 93 STO 04
 94 X<> Z
 95 X>0?
 96 X>Y?
 97 FS? 30
 98 STO 04
 99 RCL 13
100 X=0?
101 GTO 01
102 X<0?
103 GTO 02
104 RCL 07
105 RCL 08
106 ST+ X
107 +
108 1
109 +
110 SQRT
111 1
112 +
113 RCL 08       
114 +
115 STO 11
116 LASTX
117 RCL 07
118 X<0?
119 CLX
120 SQRT
121 +
122 X=0?
123 GTO 00
124 STO 05
125 /
126 ABS
127 LN
128 RCL 10
129 /
130 STO 02
131 RCL 11
132 RCL 08
133 ST+ X
134 RCL 12
135 ST* Y
136 X^2
137 +
138 RCL 07
139 +
140 SQRT
141 RCL 08
142 +
143 RCL 12
144 +
145 /
146 ABS
147 LN
148 RCL 10
149 /
150 STO 01
151 RCL 09       
152 RCL 06
153 X=Y?
154 GTO 03
155 X^2
156 RCL 08
157 +
158 RCL 05
159 /
160 ABS
161 LN
162 ST+ X
163 RCL 10
164 /
165 STO 03
166 GTO 03
167 LBL 00
168 RCL 09
169 STO 02
170 GTO 03
171 LBL 01
172 1
173 RCL 07
174 X<0?
175 CLX
176 SQRT
177 STO 05
178 -
179 RCL 08
180 X=0?
181 GTO 04
182 /
183 STO 02
184 1
185 RCL 08
186 RCL 12
187 *
188 RCL 07
189 +
190 SQRT
191 -
192 RCL 08       
193 /
194 STO 01
195 RCL 09
196 RCL 06
197 X=Y?
198 GTO 03
199 X^2
200 RCL 08
201 *
202 RCL 07
203 +
204 SQRT
205 RCL 05
206 -
207 ST+ X
208 RCL 08
209 /
210 STO 03
211 GTO 03
212 LBL 02
213 1
214 RCL 08
215 ST+ Y
216 X^2
217 RCL 07
218 -
219 SQRT
220 STO 01
221 /
222 ASIN
223 STO 09
224 90
225 +
226 D-R
227 RCL 10
228 /
229 STO 02
230 RCL 09
231 RCL 08
232 RCL 12       
233 +
234 RCL 01
235 /
236 ASIN
237 -
238 D-R
239 RCL 10
240 /
241 STO 01
242 PI
243 ST+ X
244 RCL 10
245 /
246 STO 03
247 GTO 03
248 LBL 04
249 .5
250 ENTER
251 STO 02
252 RCL 12
253 *
254 -
255 STO 01
256 LBL 03
257 RCL 00
258 X#0?
259 SIGN
260 ENTER
261 X<> 00
262 ABS
263 SQRT
264 X=0?
265 SIGN
266 1/X
267 SF 24
268 1377 E7
269 ST* 01
270 ST* 02
271 ST* 03
272 *
273 STO 05       
274 ST* 04
275 ST* 06
276 RCL 02
277 RCL 03
278 SIGN
279 CLX
280 RCL 01
281 CF 24
282 END

 
           ( 335 bytes / SIZE 014 )
 
 

      STACK        INPUTS      OUTPUTS
           T             /           k
           Z           ¶0           R0
           Y        L0 < 0            t0
           X            z            D
           L            /            P

  where the distances are expressed in light-years and the times in years

Example1:    With   ¶0 = -0.0001  ,   L0 = -0.1  ,  z = 10

      -0.0001  ENTER^
         -0.1     ENTER^
           10     XEQ "TOL"   >>>>   D  = 1.2148    E10  l-y     = R01
                                          RDN    t0 =  1.3336   E10  years = R02
                                          RDN   R0 =  1.3129   E10  L-y   = R05
                                          RDN    k  =   -1                          = R00
                                       LASTX   P  =  1.3680   E11 years = R03

 And we also have:

    R04 =  Rmin =  1.2517   E08  l-y
    R06 =  Rmax =  4.3544   E10 l-y

Example2:       ¶0 = 0.1  ,  L0 = 0.6  ,   z  = 7

         0.1   ENTER^
         0.6   ENTER^
           7    XEQ "TOL"  >>>>  D = 1.1670   E10   light-years
                                      RDN   t0 = 1.2006   E10   years
                                      RDN  R0 = 2.5140   E10   light-years
                                      RDN   k  = -1  ( hyperbolic Universe )
                                   LASTX  P =  9.9999   E99  ( infinite )

 We also have:

    R04 =  Rmin =  0
    R06 =  Rmax =  9.9999   E99  ( infinte )
 

Example3:       ¶0 = 1.1  ,  L0 = 0  ,   z  = 7

         1.1   ENTER^
          0     ENTER^
          7     XEQ "TOL"  >>>>  D = 6.6184   E09   light-years
                                      RDN   t0 = 6.7210   E09   years
                                      RDN  R0 = 4.3545   E10   light-years
                                      RDN   k  = +1  ( spherical Universe )
                                   LASTX  P =  2.8884   E11   years

 We also have:

    R04 =  Rmin =  0
    R06 =  Rmax =  1.4442   E11  light-years
 

5°)  Other Cyclic Universes without Singularity
 

-Instead of solving Einstein's equations in a homogeneous & isotropic Universe:

  2 R(t).d2R/dt2 + (dR/dt)2 + k.c2 = ( -(8.PI.G/c2 ).p + (Lambda).c2 ).R2(t)
     (dR/dt)2 + k.c2  = ( (8.PI.G/3) (rho) + (Lambda/3).c2 ).R2(t)
 

"PULSE" employs these equations to calculate different parameters for a given date,
 assuming that the radius of the Universe may be expressed as a function of time by

    R(t) = A + B Sin2 ( Pi t / P )

 A = Rmin  is the positive minimum of the scale factor and A+B = Rmax
 

-We have also    H = R' / R  ,  q = - R R" / R'2  ,  L = Lambda c2 R2 / ( 3 R'2 )   with  ' = d/dt
 

Data Registers:           •  R00 = k  ( -1 , 0 or +1 )                    ( Registers R00 thru R04 are to be initialized before executing "PULSE" )

                                      •  R01 = A = Rmin ( in light-years )                                          R05 = R                                             R09: temp
                                      •  R02 = B  ( in light-years )                                                      R06 = H ( km/s/Mpc )                        R10 = t
                                      •  R03 = P = period ( in years )                                                 R07 = q = deceleration parameter
                                      •  R04 = Lambda = Cosmological constant ( in light-years-2 )    R08 = L = Cosmological parameter
Flags: /
Subroutines: /
 
 
 
 

 01  LBL "PULSE"
 02  DEG
 03  STO 10        
 04  180
 05  *
 06  RCL 03
 07  /
 08  STO 09
 09  ST+ X
 10  SIN
 11  RCL 02
 12  *
 13  PI
 14  *
 15  RCL 03
 16  /
 17  STO 06
 18  X^2
 19  RCL 00
 20  +
 21  RCL 09
 22  SIN
 23  X^2
 24  RCL 02        
 25  *
 26  RCL 01
 27  +
 28  STO 05
 29  ST/ 06
 30  X^2
 31  /
 32  RCL 09
 33  ST+ X
 34  COS
 35  RCL 02
 36  *
 37  PI
 38  RCL 03
 39  /
 40  X^2
 41  *
 42  RCL 05        
 43  /
 44  ST+ X
 45  STO 07 
 46  ST+ X
 47  +
 48  X<>Y
 49  RCL 04
 50  ST- Z
 51  3
 52  /
 53  STO 08
 54  -
 55  16702 E2
 56  CHS
 57  ST/ Z
 58  CHS
 59  /
 60  3
 61  *
 62  RCL 06        
 63  X=0?
 64  GTO 00
 65  X^2
 66  ST/ 08
 67  CHS
 68  ST/ 07
 69  GTO 01
 70  LBL 00
 71  CLX
 72  RCL 04
 73  X#0?
 74  SIGN
 75  90
 76  TAN
 77  *
 78  STO 08
 79  X<> L
 80  RCL 07
 81  SIGN
 82  *
 83  CHS
 84  STO 07        
 85  LBL 01
 86  CLX
 87  RCL 06
 88  9778 E8
 89  *
 90  STO 06
 91  STO T
 92  CLX
 93  RCL 07
 94  SIGN
 95  CLX
 96  RCL 05
 97  END

 
         ( 134 bytes / SIZE 011 )
 
 

      STACK        INPUTS      OUTPUTS
           T             /   H ( km/s/Mpc )
           Z             /     p/c2 ( kg/m3 )
           Y             /     rho ( kg/m3 )
           X            t          R(t)
           L            /            q

  Where the distances are expressed in light-years and the times in years ( c = 1 )

                  H = Hubble's "constant" = R' / R
                   p = pressure
      and      rho = density
                   R  = scale factor
                   q  = deceleration parameter

Example:   With k = +1 ( Spherical Universe )  ,  A = Rmin = 7 108 L-y  ,  B = 84 109 L-y  ,  P = 116 109 L-y  ,  Lambda = 10 -20 L-y -2

       1       STO 00
     7 E8    STO 01
    84 E9   STO 02
   116 E9  STO 03
     E-20    STO 04

-If   t = 25 109 years    25 E9  XEQ "PULSE"  >>>>    R  = 3.367 E10  = R05
                                                                        RDN   rho =  3.417 E-27 kg/m3
                                                                        RDN   p/c2 = 1.910 E-27 kg/m3
                                                                        RDN    H   =  64.519   km/s/Mpc  = R06
                                                                      LASTX   q   =  -0.181  =  R07

   and    R08 = Cosmological parameter = L = 0.766

Notes:

-In this fictitious Universe, the mass is not constant and the pressure - even the density - may be negative
-Here are a few other values:  (  9.999...  E99 = infinity )
 
 

        t            R           rho         p/c^2          H            q            L
       0         7 E8    3.660  E-24   -1.427  E-24          0    -9.999  E99    +9.999  E99
    7 E9     3.683  E09    2.203  E-25   -1.067  E-25    223.556        -0.595         0.064
   12 E9     9.264  E09    5.461  E-26   -2.689  E-26    145.311        -0.479         0.151
   24 E9     3.146  E10    4.545  E-27   +1.222 E-27     68.121        -0.216         0.687
   58 E9     8.470  E10   -5.737 E-27   +7.646 E-27          0    +9.999  E99    +9.999  E99

 
-With the same constants in R00 thru R03 but  R04 = Lambda = 0  we find:
 
 

           t            R           rho          p/c^2            H             q    L
          0         7 E8    3.666  E-24    -1.433  E-24            0     -9.999  E99    0
       7 E9     3.683  E09    2.263  E-25    -1.127  E-25      223.556         -0.595    0
      12 E9     9.264  E09    6.060  E-26    -3.288  E-26      145.311         -0.479    0
      24 E9     3.146  E10    1.053  E-26    -4.765  E-27       68.121         -0.216    0
      41 E9     6.812  E10    1.657  E-27    +7.586 E-28       25.997         +1.549    0
      58 E9     8.470  E10    2.504  E-28    +1.659 E-27            0     +9.999  E99    0
      75 E9     6.812  E10    1.657  E-27    +7.586 E-28      -25.997         +1.549    0
      92 E9     3.146  E10    1.053  E-26    -4.765  E-27      -68.121         -0.216    0
     104 E9     9.264  E09    6.060  E-26    -3.288  E-26     -145.311         -0.479    0
     109 E9     3.683  E09    2.263  E-25    -1.127  E-25     -223.556         -0.595    0
     116 E9         7 E8    3.666  E-24    -1.433  E-24           0     -9.999  E99    0

 
-Here, rho is always positive.
-After t = 58 E9, the results are symmetric, with a sign change for the Hubble parameter H ( contraction after expansion )

-During the expansion, the pressure p = 0 for t = 36.1378 E9 ( approximately )
    and the deceleration parameter    q = 0 for t = 29 E9 = P / 4   ( exactly )  i-e  when R" = 0
 

Remark:

-Use the following variant if you prefer to get the density parameter and the pressure parameter ( instead of rho & p/c2 )
 
 
 

 01  LBL "PULSE"
 02  DEG
 03  STO 10        
 04  PI
 05  RCL 03
 06  /
 07  STO 07
 08  R-D
 09  *
 10  STO 09
 11  ST+ X
 12  SIN
 13  RCL 02
 14  *
 15  RCL 07
 16  *
 17  STO 06        
 18  X^2
 19  RCL 00
 20  +
 21  RCL 09
 22  SIN
 23  X^2
 24  RCL 02
 25  *
 26  RCL 01
 27  +
 28  STO 05
 29  ST/ 06
 30  X^2
 31  /
 32  RCL 09        
 33  ST+ X
 34  COS
 35  RCL 02
 36  RCL 07
 37  X^2
 38  *
 39  *
 40  RCL 05
 41  /
 42  ST+ X
 43  STO 07
 44  ST+ X
 45  +
 46  X<>Y
 47  RCL 04        
 48  ST- Z
 49  3
 50  /
 51  STO 08
 52  -
 53  RCL 06
 54  X=0?
 55  GTO 00
 56  X^2
 57  ST/ 08
 58  ST/ Y
 59  CHS
 60  ST/ 07
 61  ST/ Z
 62  GTO 01
 63  LBL 00
 64  90
 65  TAN
 66  STO 08        
 67  R^
 68  CHS
 69  SIGN
 70  *
 71  R^
 72  SIGN
 73  RCL 08
 74  ST* Y
 75  RCL 07
 76  SIGN
 77  *
 78  CHS
 79  STO 07        
 80  CLX
 81  RCL 04
 82  X#0?
 83  SIGN
 84  ST* 08
 85  LBL 01
 86  CLX
 87  RCL 06
 88  9778 E8
 89  *
 90  STO 06        
 91  STO T
 92  CLX
 93  RCL 07
 94  SIGN
 95  CLX
 96  RCL 05
 97  END

 
        ( 128 bytes / SIZE 011 )
 
 

      STACK        INPUTS      OUTPUTS
           T             /   H ( km/s/Mpc )
           Z             /            ¶
           Y             /       OmegaMat
           X             t          R(t)
           L             /            q

  Where the distances are expressed in light-years and the times in years ( c = 1 )

                  H        = Hubble's "constant" = R' / R
                  ¶         = pressure parameter = 8 PI G p / ( c2 H2 )
  and    OmegaMat = density parameter = 8 PI G rho / ( 3 H2 )
                 R         = scale factor
                 q         = deceleration parameter = - R R" / R'2

Example:   With k = +1 ( Spherical Universe )  ,  A = Rmin = 108 L-y  ,  B = 84 109 L-y  ,  P = 173 109 L-y  ,  Lambda = 10 -20 L-y -2

       1       STO 00
     1 E8    STO 01
    84 E9   STO 02
   173 E9  STO 03
     E-20    STO 04

-If   t = 25 109 years    25 E9  XEQ "PULSE"  >>>>          R         =  16.256 E9  = R05                       ---Execution time = 4s---
                                                                        RDN   Omega(mat) =  1.082
                                                                        RDN          ¶           = -0.631
                                                                        RDN          H          =  72.327   km/s/Mpc  = R06
                                                                      LASTX         q         =  -0.383  =  R07

   and    R08 = Cosmological parameter = L = 0.609
 

>>> The last 2 versions may be put together if we use a flag ( for instance F01 ):
 

Data Registers:           •  R00 = k  ( -1 , 0 or +1 )                    ( Registers R00 thru R04 are to be initialized before executing "PULSE" )

                                      •  R01 = A = Rmin ( in light-years )                                          R05 = R                                             R09: temp
                                      •  R02 = B  ( in light-years )                                                      R06 = H ( km/s/Mpc )                        R10 = t
                                      •  R03 = P = period ( in years )                                                 R07 = q = deceleration parameter
                                      •  R04 = Lambda = Cosmological constant ( in light-years-2 )    R08 = L = Cosmological parameter

Flag:  F01           CF 01 ->  Y-Z outputs = OmegaMat  &   ¶
                            SF 01  ->  Y-Z outputs =  rho & p / c2
Subroutines: /
 
 

 01  LBL "PULSE"
 02  DEG
 03  STO 10        
 04  PI
 05  RCL 03
 06  /
 07  STO 07
 08  R-D
 09  *
 10  STO 09
 11  ST+ X
 12  SIN
 13  RCL 02
 14  *
 15  RCL 07
 16  *
 17  STO 06
 18  X^2
 19  RCL 00        
 20  +
 21  RCL 09
 22  SIN
 23  X^2
 24  RCL 02
 25  *
 26  RCL 01
 27  +
 28  STO 05
 29  ST/ 06
 30  X^2
 31  /
 32  RCL 09
 33  ST+ X
 34  COS
 35  RCL 02        
 36  RCL 07
 37  X^2
 38  *
 39  *
 40  RCL 05
 41  /
 42  ST+ X
 43  STO 07
 44  ST+ X
 45  +
 46  CHS
 47  X<>Y
 48  RCL 04
 49  ST+ Z
 50  3
 51  /
 52  STO 08        
 53  -
 54  FC? 01
 55  GTO 00
 56  16702 E2
 57  ST/ Z
 58  /
 59  3
 60  *
 61  LBL 00
 62  RCL 06
 63  X=0?
 64  GTO 00
 65  X^2
 66  ST/ 08
 67  FC? 01
 68  ST/ Y
 69  FC? 01
 70  ST/ Z
 71  CHS
 72  ST/ 07
 73  GTO 01
 74  LBL 00
 75  CLX
 76  90
 77  TAN
 78  STO 08        
 79  FS? 01
 80  GTO 00
 81  ENTER
 82  R^
 83  SIGN
 84  *
 85  R^
 86  SIGN
 87  RCL 08        
 88  ST* Y
 89  LBL 00
 90  RCL 07
 91  SIGN
 92  *
 93  CHS
 94  STO 07 
 95  CLX
 96  RCL 04
 97  X#0?
 98  SIGN
 99  ST* 08
100  LBL 01
101  CLX
102  RCL 06        
103  9778 E8
104  *
105  STO 06
106  STO T
107  CLX
108  RCL 07
109  SIGN
110  CLX
111  RCL 05
112  END

 
         ( 156 bytes / SIZE 011 )
 
 

      STACK        INPUTS      OUTPUTS
           T             /   H ( km/s/Mpc )
           Z             /     ¶  or  p/c^2
           Y             /  OmMat or rho
           X             t          R(t)
           L             /            q

  Where the distances are expressed in light-years and the times in years ( c = 1 )

                  H        = Hubble's "constant" = R' / R
                  ¶         = pressure parameter = 8 PI G p / ( c2 H2 )
  and    OmegaMat = density parameter = 8 PI G rho / ( 3 H2 )
                 R         = scale factor
                 q         = deceleration parameter = - R R" / R'2

Example:   With k = +1 ( Spherical Universe )  ,  A = Rmin = 108 L-y  ,  B = 84 109 L-y  ,  P = 173 109 L-y  ,  Lambda = 10 -20 L-y -2

       1       STO 00
     1 E8    STO 01
    84 E9   STO 02                and   t = 25 109 years
   173 E9  STO 03
     E-20    STO 04

  •  CF 01

     25 E9  XEQ "PULSE"  >>>>          R         =  16.256 E9  = R05                       ---Execution time = 4s---
                                          RDN   Omega(mat) =  1.082
                                          RDN          ¶           = -0.631
                                          RDN          H          =  72.327   km/s/Mpc  = R06
                                       LASTX         q           =  -0.383  =  R07

   and    R08 = Cosmological parameter = L = 0.609

  •  SF 01

     25 E9    R/S     >>>>    R  =  16.256 E9  = R05                       ---Execution time = 4s---
                             RDN   rho =  1.064  E-26 kg/m3
                             RDN   p/c2 = -2.066  E-27 kg/m3
                             RDN     H  =  72.327   km/s/Mpc  = R06
                          LASTX     q  =  -0.383  =  R07

   and    R08 = Cosmological parameter = L = 0.609
 

Note:

-Though the real Universe is probably different from these models - but who knows ? -
  you can use these programs to explore various pulsing Universes to get a better fit...
 
 

References:

[1]  Stamatia Mavridès - "L'Univers relativiste" - Masson  ISBN 2-225-36080-7  ( in French )
[2]  Jean Heidmann - "Introduction à la cosmologie" - PUF  ( in French )
[3]  David F. Crawford - "Curvature Cosmology" - ISBN 1-59942-413-4
      or http://www.davidcrawford.bigpondhosting.com/cc2.pdf
[4]  J. Pachner - "An Oscillating Isotropic Universe without Singularity" - Mon. Not. R. astr. Soc. ( 1965 ) 131, 173-176
[5]  Hua-Hui Xiong, Yi-Fu Cai, Taotao Qiu, Yun-Song Piao, Xinmin Zhang - "Oscillating universe with quintom matter"