Cosmology(II) for the HP-41
Overview
1°) Empty Universes
2°) Einstein's & Godel's Universes
3°) Oscillating Universes
4°) Tolman Universes
5°) Other Cyclic Universes without Singularity
1°) Empty Universes
-This program summarizes several routines listed in "General Relativity & Cosmology" ( cf this page for the formulae )
-Given the cosmological parameter Lambda = L0 and the the redshift z of a galaxy or a quasar , "CSM" computes
D = light-time distance
t0 = Age of the Universe
R0 = Radius of the Universe
k = +1 for spherical Universes
D0 = comoving radial distance
P = Period of the Universe
Rmin = minimum radius of the universe
k = 0 for Euclidean Universes
DL = luminosity-distance
Rmax = maximum radius of the universe
k = -1 for hyperbolic Universes
and the recessional velocity VR ( speed of light = 1 )
-All the distances are expressed in light-years
-All the times are expressed in years
Remark:
-The Hubble's constant has been chosen such that: 1 /
H0 = 1.377 E10 years ( line 227 )
-Change this line if you want to use another value.
Data Registers: R00 = VR ( c = 1 )
R01 = D
R04 = t0
R06 = R0
R09 = k ( -1 , 0 , +1 )
R02 = D0
R05 = P
R07 = Rmin
R03 = DL
R08 = Rmax
( R10 = z R11 = z + 1 R12 = L0
R13 & R14: temp )
Flag: F24
Subroutines: /
-Lines 66 and 84 are three-byte GTO 04
01 LBL "CSM" 02 DEG 03 STO 10 04 1 05 + 06 STO 11 07 X<>Y 08 STO 12 09 1 10 - 11 STO 04 12 RCL 12 13 X=0? 14 SIGN 15 / 16 ABS 17 SQRT 18 STO 13 19 * 20 STO 14 21 CLX 22 STO 05 23 STO 07 24 90 25 TAN 26 STO 08 27 SIGN 28 CHS 29 STO 09 30 RCL 12 31 ABS 32 SQRT 33 X=0? 34 SIGN 35 1/X |
36 STO 01 37 X<> 04 38 ABS 39 SQRT 40 X=0? 41 SIGN 42 1/X 43 STO 00 44 STO 02 45 STO 03 46 STO 06 47 SIGN 48 RCL 12 49 X#0? 50 GTO 00 51 RCL 10 52 RCL 11 53 1 54 + 55 * 56 2 57 / 58 STO 03 59 RCL 11 60 LN 61 STO 00 62 STO 02 63 RCL 10 64 RCL 11 65 / 66 GTO 04 67 LBL 00 68 X<0? 69 GTO 01 70 X#Y? |
71 GTO 02 72 CLX 73 STO 09 74 RCL 10 75 STO 00 76 STO 02 77 RCL 11 78 * 79 STO 03 80 RCL 08 81 STO 04 82 LASTX 83 LN 84 GTO 04 85 LBL 01 86 PI 87 RCL 01 88 * 89 STO 05 90 RCL 06 91 RCL 13 92 * 93 STO 08 94 RCL 14 95 ENTER 96 X^2 97 1 98 - 99 SQRT 100 + 101 RCL 13 102 ENTER 103 X^2 104 1 105 - |
106 SQRT 107 + 108 / 109 LN 110 ST* 00 111 ST* 02 112 E^X-1 113 LASTX 114 CHS 115 E^X-1 116 - 117 2 118 / 119 RCL 11 120 * 121 ST* 03 122 RCL 13 123 1/X 124 ASIN 125 D-R 126 ST* 04 127 RCL 14 128 1/X 129 ASIN 130 D-R 131 - 132 GTO 04 133 LBL 02 134 X>Y? 135 GTO 03 136 RCL 14 137 ENTER 138 X^2 139 1 140 + |
141 SQRT 142 + 143 RCL 13 144 ENTER 145 X^2 146 1 147 + 148 SQRT 149 + 150 / 151 LN 152 ST* 00 153 ST* 02 154 E^X-1 155 LASTX 156 CHS 157 E^X-1 158 - 159 2 160 / 161 RCL 11 162 * 163 ST* 03 164 RCL 13 165 1/X 166 ENTER 167 X^2 168 1 169 + 170 SQRT 171 + 172 LN 173 ST* 04 174 RCL 14 175 1/X |
176 ENTER 177 X^2 178 1 179 + 180 SQRT 181 + 182 LN 183 - 184 GTO 04 185 LBL 03 186 X<>Y 187 STO 09 188 RCL 13 189 ACOS 190 RCL 14 191 ACOS 192 - 193 D-R 194 ST* 00 195 ST* 02 196 LASTX 197 SIN 198 RCL 11 199 * 200 ST* 03 201 RCL 06 202 RCL 13 203 * 204 STO 07 205 LASTX 206 1/X 207 ENTER 208 X^2 209 1 210 - |
211 SQRT 212 + 213 LN 214 ST* 04 215 RCL 14 216 1/X 217 ENTER 218 X^2 219 1 220 - 221 SQRT 222 + 223 LN 224 - 225 LBL 04 226 SF 24 227 1377 E7 228 ST* 02 229 ST* 03 230 ST* 04 231 ST* 05 232 ST* 06 233 ST* 07 234 ST* 08 235 * 236 ST* 01 237 CF 24 238 RCL 09 239 RCL 06 240 RCL 04 241 RCL 01 242 END |
( 289 bytes / SIZE 015 )
STACK | INPUTS | OUTPUTS |
T | / | k |
Z | / | R0 |
Y | L0 | t0 |
X | z | D |
Example: With z = 7
, here are the results given for 5 L-values ( except z =
0.3 if L0 = 1.4 )
L0 | -0.4 | 0 | +0.4 | 1 | 1.4 | units | Registers |
D | 1.0823 | 1.2049 | 1.4013 | 2.8634 | 0.3877 | x E10 | R01 |
D0 | 2.5125 | 2.8634 | 3.4598 | 9.6390 | 0.4448 | x E10 | R02 |
DL | 3.9784 | 4.3376 | 4.8774 | 7.7112 | 0.5743 | x E11 | R03 |
t0 | 1.2278 | 1.3770 | 1.6231 | infinity | 1.4419 | x E10 | R04 |
P | 6.8400 | 0 | 0 | 0 | 0 | x E10 | R05 |
R0 | 1.1638 | 1.3770 | 1.7777 | 1.3770 | 2.1772 | x E10 | R06 |
Rmin | 0 | 0 | 0 | 0 | 1.1638 | x E10 | R07 |
Rmax | 2.1772 | infinity | infinity | infinity | infinity | x E10 | R08 |
k | -1 | -1 | -1 | 0 | +1 | x 1 | R09 |
VR | 1.8246 | 2.0794 | 2.5125 | 7 | 0.3230 | x 1 | R00 |
Notes:
-"CSM" always stops at the last line.
-"infinity" is actually displayed 9.999999999 E99
-The period P only exists if the cosmological parameter L0
is negative
-The maximum radius Rmax is finite only if L0 <
0. In this case, we have a pulsating Universe with a big bang &
a big crunch
-The minimum radius Rmin is positive ( > 0 ) only if L0
> 1
-> t0 P R0
Rmin Rmax and
k are of course independant from z
2°) Einstein's & Gödel's Universes
-The first version of Einstein's Universe was a static Spherical Universe.
-The radius R of the Universe is related to the cosmological constant Lambda
and the mean density (rho) by
Lambda = 4 Pi G (rho) / c2
where G is the gravitational constant
R
= 1 / SQRT(Lambda)
and c is the speed of light
-K. Gödel found a rotating - but non expanding - Universe where the metric is defined by
ds2 = a2 [ ( dx0 + exp x1 dx2 )2 - ( dx1 )2 - (1/2) exp 2.x1 ( dx2 )2 - ( dx3 )2 ] where a is a constant
-Assuming the pressure p = 0 , Einstein's equations lead to
Lambda = -1 / ( 2.a2 )
= - 4 Pi G (rho) / c2 and the period T of rotation
of the matter is given by
T
= 2 Pi / omega with omega = [ 4 Pi G (rho) ]1/2
-"EINGD" takes the mean density (rho) and returns the main constants above
Data Registers: /
Flag: F01 CF 01 = Einstein's
Universe
SF 01 = Gôdel's Universe
Subroutines: /
01 LBL "EINGD" 02 STO M 03 21156 04 * 05 ABS 06 SQRT 07 1/X 08 FS? 01 09 GTO 00 10 DEG 11 90 12 TAN 13 LBL 00 14 RCL M 15 835206 16 * 17 FS? 01 18 CHS 19 ENTER^ 20 ABS 21 FS? 01 22 ST+ X 23 SQRT 24 1/X 25 0 26 X<> M 27 SIGN 28 RDN 29 END |
( 57 bytes / SIZE 000 )
STACK | INPUT | CF01 OUTPUTS | SF01 OUTPUTS |
T | / | k = +/-1 | k = +/-1 |
Z | / | T | T |
Y | / | Lambda | Lambda |
X | rho ( kg/m3 ) | R | a |
L | / | rho | rho |
R is expressed in light-years
Where Lambda is expressed in (light-years) -2
k = +1 for a spherical Universe or -1 for a hyperbolic Universe
T is expressed in years
Example: If rho = 3.14 10 -28 kg/m3
• Einstein's Universe CF 01
CF 01
3.14 E-28 XEQ "EINGD" >>>>
R = 6.1750 E10 l-y
RDN Lam = 2.6225 E-22 (l-y) -2
RDN T = 9.9999 E99
years ( no rotation )
RDN k = +1
• Gödel's Universe SF 01
SF 01
3.14 E-28 XEQ "EINGD" >>>>
a = 4.3664 E10 l-y
RDN Lam = -2.6225 E-22 (l-y) -2
RDN T = 3.8799
E11 years ( period )
RDN k = +1
Notes:
-Though it's probably not realistic, "EINGD" may also be used with a negative density, for example:
CF 01
-3.14 E-28 XEQ "EINGD" >>>>
R = 6.1750 E10 l-y
RDN Lam = -2.6225 E-22 (l-y) -2
RDN T = 9.9999 E99
years ( no rotation )
RDN k = -1
-With rho < 0 , Einstein's Universe becomes hyperbolic and stable
-David F. Crawford has created an alternative cosmology, "Curvature Cosmology"
where a static spherical Universe is stable too !
-It's a tired-light model. ( cf reference [3] )
3°) Oscillating Universes
-This program supposes that there is only a negative cosmological parameter
Lambda and a radiation parameter ¶ ( matter-density = 0 )
-Though it's "probably" not realistic, it gives examples of pulsating universes
without any singularity.
-As before, Einstein's equations are used.
Data Registers: R00 = k ( -1 , 0 , +1 )
R01 = D
R04 = R0
R07 = zmin < 0
R10 = Lambda < 0
R02 = t0
R05 = Rmin R08
= zmax
R11 = ¶
R03 = P
R06 = Rmax R09
= z
R12 = ¶ / Lambda
Flags: /
Subroutines: /
01 LBL "PULSE" 02 DEG 03 STO 09 04 X<> Z 05 STO 11 06 X<>Y 07 STO 10 08 / 09 STO 12 10 LASTX 11 RCL 11 12 + 13 1 14 - 15 STO 00 16 RCL 10 17 ST+ X 18 / 19 CHS 20 STO 04 21 CHS 22 ENTER 23 X^2 24 RCL 12 25 - 26 SQRT 27 RCL Y 28 SIGN 29 * 30 + 31 X#0? |
32 ST/ Y 33 X<0? 34 CLX 35 X<>Y 36 X<0? 37 CLX 38 X>Y? 39 X<>Y 40 SQRT 41 STO 05 42 X=0? 43 GTO 00 44 1/X 45 1 46 - 47 GTO 01 48 LBL 00 49 CLX 50 90 51 TAN 52 LBL 01 53 X<>Y 54 SQRT 55 STO 06 56 1/X 57 1 58 - 59 X>Y? 60 X<>Y 61 STO 07 62 X<>Y |
63 STO 08 64 1 65 STO Y 66 RCL 04 67 ST+ Y 68 X^2 69 RCL 12 70 - 71 SQRT 72 STO 03 73 / 74 ASIN 75 RCL 04 76 RCL 09 77 1 78 + 79 X^2 80 1/X 81 + 82 RCL 03 83 / 84 ASIN 85 - 86 D-R 87 X<>Y 88 RCL 05 89 X>0? 90 GTO 00 91 CLX 92 RCL 08 93 1 |
94 + 95 1/X 96 X^2 97 RCL 04 98 + 99 RCL 03 100 / 101 ASIN 102 GTO 01 103 LBL 00 104 CLX 105 90 106 CHS 107 LBL 01 108 STO 03 109 - 110 D-R 111 90 112 RCL 03 113 - 114 D-R 115 ST+ X 116 STO 03 117 CLX 118 RCL 00 119 X#0? 120 SIGN 121 X<> 00 122 ABS 123 SQRT 124 X=0? |
125 SIGN 126 1/X 127 STO 04 128 ST* 05 129 ST* 06 130 X<> Z 131 RCL 10 132 CHS 133 SQRT 134 ST+ X 135 ST/ 03 136 ST/ Z 137 / 138 1377 E7 139 ST* 03 140 ST* 04 141 ST* 05 142 ST* 06 143 ST* T 144 ST* Z 145 * 146 STO 01 147 X<>Y 148 STO 02 149 X<>Y 150 RCL 03 151 SIGN 152 CLX 153 RCL 00 154 RDN 155 END |
( 197 bytes / SIZE
013 )
STACK | INPUTS | OUTPUTS |
T | / | k |
Z | ¶0 | R0 |
Y | L0 < 0 | t0 |
X | z | D |
L | / | P |
where the distances are expressed in light-years and the times in years
Example: With ¶0 = -0.0001 , L0 = -0.1 , z = 10
-0.0001 ENTER^
-0.1
ENTER^
10
XEQ "PULSE" >>>> D =
1.2148 E10 l-y = R01
RDN t0 = 1.3336 E10
years = R02
RDN R0 = 1.3129 E10 L-y
= R04
RDN k = -1
= R00
LASTX P = 1.3680 E11 years = R03
And we also have:
R05 = Rmin = 1.2517
E08 l-y
R06 = Rmax = 4.3544
E10 l-y
R07 = zmin = -0.6985
R08 = zmax = 103.8852
-So, this universe is hyperbolic and its radius oscillates between
Rmin = 1.2517 E08 l-y and
Rmax = 4.3544 E10 l-y
-The period between 2 minima or 2 maxima is P = 1.3680
E11 years
R
|
|
*
*
|
* *
* *
|
*
*
*
*
| *
*
*
*
|*
*
*
|-------------------------- P--------------------------2P----------------------------
t
-The program may be simplified if L0 & ¶0 are negative:
Data Registers: R00 = D
R01 = t0 R03 = R0 R05 = Rmax
R02 = P R04 = Rmin R06-R07: temp
Flags: /
Subroutines: /
01 LBL "CSM" 02 DEG 03 1 04 + 05 X^2 06 STO 00 07 SIGN 08 X<>Y 09 STO 03 10 ST+ Z 11 - 12 X<>Y 13 STO 06 14 - 15 STO 07 16 RCL 03 |
17 ST/ 06 18 ST+ X 19 / 20 STO 04 21 1 22 X<>Y 23 ST+ Y 24 X^2 25 RCL 06 26 - 27 SQRT 28 STO 05 29 / 30 ASIN 31 D-R 32 STO 01 |
33 RCL 00 34 1/X 35 RCL 04 36 + 37 RCL 05 38 / 39 ASIN 40 D-R 41 - 42 STO 00 43 PI 44 STO 02 45 2 46 / 47 ST+ 01 48 RCL 03 |
49 CHS 50 SQRT 51 ST/ 02 52 ST+ X 53 ST/ 00 54 ST/ 01 55 1377 E7 56 ST* 00 57 ST* 01 58 ST* 02 59 RCL 07 60 SQRT 61 / 62 STO 03 63 RCL 06 64 SQRT |
65 RCL 05 66 RCL 04 67 - 68 SQRT 69 STO 05 70 / 71 RCL 03 72 ST* 05 73 * 74 STO 04 75 LASTX 76 RCL 02 77 RCL 01 78 RCL 00 79 END |
( 105 bytes / SIZE
008 )
STACK | INPUTS | OUTPUTS |
T | / | R0 |
Z | q | P |
Y | L0 < 0 | t0 |
X | z | D |
where the distances are expressed in light-years and the times in years
Example: q = -0.007 L0 = - 0.003 z = 7-0.007 ENTER^
-0.003 ENTER^
7 XEQ "CSM" >>>> D = 1.2583 E10 L-y = R00 ---Execution time = 4.5s---
RDN t0 = 1.3621 E10 years = R01
RDN P = 7.8981 E11 years = R02
RDN R0 = 1.3681 E10 L-y = R03
and R04 = Rmin = 1.3593 E09 L-y & R05 = Rmax = 2.5140 E11 L-y
Notes:
q = deceleration parameter and radiation parameter ¶ = q + L0
-If you prefer ¶ in Z-register, simply delete line 10 ( ST+ Z )
-You can also compute zmax = -1 + R0 / Rmin
-In the above example, zmax = 9.0646
-Such Universes are hyperbolic ( k = -1 )
4°) Tolman Universes
-Here, (Omega)mat = 0
Data Registers: R00 = k ( -1 , 0 , +1 )
R01 = D
R04 = Rmin
R07 to R13: temp
R02 = t0
R05 = R0
R03 = P
R06 = Rmax
Flag: F24
Subroutines: /
01 LBL "TOL" 02 DEG 03 1 04 + 05 X^2 06 1/X 07 STO 12 08 RDN 09 STO 13 10 X<>Y 11 STO 07 12 + 13 90 14 TAN 15 STO 03 16 STO 06 17 STO 09 18 CLX 19 STO 04 20 SIGN 21 - 22 STO 00 23 CHS 24 RCL 13 25 X=0? 26 SIGN 27 ST/ 07 28 / 29 STO 08 30 RCL 13 31 X=0? 32 GTO 01 33 ABS 34 SQRT 35 ST+ X 36 STO 10 37 CLX 38 2 39 / 40 STO 08 |
41 X^2 42 RCL 07 43 - 44 X<0? 45 GTO 02 46 SQRT 47 RCL 08 48 SIGN 49 * 50 RCL 08 51 + 52 CHS 53 RCL 07 54 RCL Y 55 X=0? 56 SIGN 57 / 58 X<0? 59 CLX 60 SQRT 61 X<>Y 62 X<0? 63 CLX 64 SQRT 65 X<Y? 66 X<>Y 67 GTO 03 68 LBL 01 69 RCL 07 70 CHS 71 RCL 08 72 X=0? 73 GTO 02 74 / 75 X<0? 76 CLX 77 SQRT 78 ENTER 79 GTO 03 80 LBL 02 |
81 CLST 82 LBL 03 83 1 84 X<>Y 85 X>Y? 86 STO 06 87 X<> Z 88 X>Y? 89 STO 06 90 X>0? 91 X>Y? 92 FS? 30 93 STO 04 94 X<> Z 95 X>0? 96 X>Y? 97 FS? 30 98 STO 04 99 RCL 13 100 X=0? 101 GTO 01 102 X<0? 103 GTO 02 104 RCL 07 105 RCL 08 106 ST+ X 107 + 108 1 109 + 110 SQRT 111 1 112 + 113 RCL 08 114 + 115 STO 11 116 LASTX 117 RCL 07 118 X<0? 119 CLX 120 SQRT |
121 + 122 X=0? 123 GTO 00 124 STO 05 125 / 126 ABS 127 LN 128 RCL 10 129 / 130 STO 02 131 RCL 11 132 RCL 08 133 ST+ X 134 RCL 12 135 ST* Y 136 X^2 137 + 138 RCL 07 139 + 140 SQRT 141 RCL 08 142 + 143 RCL 12 144 + 145 / 146 ABS 147 LN 148 RCL 10 149 / 150 STO 01 151 RCL 09 152 RCL 06 153 X=Y? 154 GTO 03 155 X^2 156 RCL 08 157 + 158 RCL 05 159 / 160 ABS |
161 LN 162 ST+ X 163 RCL 10 164 / 165 STO 03 166 GTO 03 167 LBL 00 168 RCL 09 169 STO 02 170 GTO 03 171 LBL 01 172 1 173 RCL 07 174 X<0? 175 CLX 176 SQRT 177 STO 05 178 - 179 RCL 08 180 X=0? 181 GTO 04 182 / 183 STO 02 184 1 185 RCL 08 186 RCL 12 187 * 188 RCL 07 189 + 190 SQRT 191 - 192 RCL 08 193 / 194 STO 01 195 RCL 09 196 RCL 06 197 X=Y? 198 GTO 03 199 X^2 200 RCL 08 |
201 * 202 RCL 07 203 + 204 SQRT 205 RCL 05 206 - 207 ST+ X 208 RCL 08 209 / 210 STO 03 211 GTO 03 212 LBL 02 213 1 214 RCL 08 215 ST+ Y 216 X^2 217 RCL 07 218 - 219 SQRT 220 STO 01 221 / 222 ASIN 223 STO 09 224 90 225 + 226 D-R 227 RCL 10 228 / 229 STO 02 230 RCL 09 231 RCL 08 232 RCL 12 233 + 234 RCL 01 235 / 236 ASIN 237 - 238 D-R 239 RCL 10 240 / 241 STO 01 |
242 PI 243 ST+ X 244 RCL 10 245 / 246 STO 03 247 GTO 03 248 LBL 04 249 .5 250 ENTER 251 STO 02 252 RCL 12 253 * 254 - 255 STO 01 256 LBL 03 257 RCL 00 258 X#0? 259 SIGN 260 ENTER 261 X<> 00 262 ABS 263 SQRT 264 X=0? 265 SIGN 266 1/X 267 SF 24 268 1377 E7 269 ST* 01 270 ST* 02 271 ST* 03 272 * 273 STO 05 274 ST* 04 275 ST* 06 276 RCL 02 277 RCL 03 278 SIGN 279 CLX 280 RCL 01 281 CF 24 282 END |
( 335
bytes / SIZE 014 )
STACK | INPUTS | OUTPUTS |
T | / | k |
Z | ¶0 | R0 |
Y | L0 < 0 | t0 |
X | z | D |
L | / | P |
where the distances are expressed in light-years and the times in years
Example1: With ¶0 = -0.0001 , L0 = -0.1 , z = 10
-0.0001 ENTER^
-0.1
ENTER^
10
XEQ "TOL" >>>> D =
1.2148 E10 l-y = R01
RDN t0 = 1.3336 E10
years = R02
RDN R0 = 1.3129 E10 L-y
= R05
RDN k = -1
= R00
LASTX P = 1.3680 E11 years = R03
And we also have:
R04 = Rmin = 1.2517
E08 l-y
R06 = Rmax = 4.3544
E10 l-y
Example2: ¶0 = 0.1 , L0 = 0.6 , z = 7
0.1
ENTER^
0.6
ENTER^
7
XEQ "TOL" >>>> D = 1.1670
E10 light-years
RDN t0 = 1.2006 E10 years
RDN R0 = 2.5140 E10 light-years
RDN k = -1 ( hyperbolic Universe )
LASTX P = 9.9999 E99 ( infinite )
We also have:
R04 = Rmin = 0
R06 = Rmax = 9.9999
E99 ( infinte )
Example3: ¶0 = 1.1 , L0 = 0 , z = 7
1.1
ENTER^
0
ENTER^
7
XEQ "TOL" >>>> D = 6.6184
E09 light-years
RDN t0 = 6.7210 E09 years
RDN R0 = 4.3545 E10 light-years
RDN k = +1 ( spherical Universe )
LASTX P = 2.8884 E11 years
We also have:
R04 = Rmin = 0
R06 = Rmax = 1.4442
E11 light-years
5°) Other Cyclic Universes without Singularity
-Instead of solving Einstein's equations in a homogeneous & isotropic Universe:
2 R(t).d2R/dt2 + (dR/dt)2 +
k.c2 = ( -(8.PI.G/c2 ).p + (Lambda).c2 ).R2(t)
(dR/dt)2 + k.c2
= ( (8.PI.G/3) (rho) + (Lambda/3).c2 ).R2(t)
"PULSE" employs these equations to calculate different parameters for
a given date,
assuming that the radius of the Universe may be expressed as a function
of time by
R(t) = A + B Sin2 ( Pi t / P )
A = Rmin is the positive minimum of the scale factor
and A+B = Rmax
-We have also H = R' / R , q = - R R" / R'2
, L = Lambda c2 R2 / ( 3 R'2 )
with ' = d/dt
Data Registers: • R00 = k ( -1 , 0 or +1 ) ( Registers R00 thru R04 are to be initialized before executing "PULSE" )
• R01 = A = Rmin ( in light-years )
R05 = R
R09: temp
• R02 = B ( in light-years )
R06 = H ( km/s/Mpc )
R10 = t
• R03 = P = period ( in years )
R07 = q = deceleration parameter
• R04 = Lambda = Cosmological constant ( in light-years-2
) R08 = L = Cosmological parameter
Flags: /
Subroutines: /
01 LBL "PULSE" 02 DEG 03 STO 10 04 180 05 * 06 RCL 03 07 / 08 STO 09 09 ST+ X 10 SIN 11 RCL 02 12 * 13 PI 14 * 15 RCL 03 16 / 17 STO 06 18 X^2 19 RCL 00 20 + |
21 RCL 09 22 SIN 23 X^2 24 RCL 02 25 * 26 RCL 01 27 + 28 STO 05 29 ST/ 06 30 X^2 31 / 32 RCL 09 33 ST+ X 34 COS 35 RCL 02 36 * 37 PI 38 RCL 03 39 / 40 X^2 |
41 * 42 RCL 05 43 / 44 ST+ X 45 STO 07 46 ST+ X 47 + 48 X<>Y 49 RCL 04 50 ST- Z 51 3 52 / 53 STO 08 54 - 55 16702 E2 56 CHS 57 ST/ Z 58 CHS 59 / 60 3 |
61 * 62 RCL 06 63 X=0? 64 GTO 00 65 X^2 66 ST/ 08 67 CHS 68 ST/ 07 69 GTO 01 70 LBL 00 71 CLX 72 RCL 04 73 X#0? 74 SIGN 75 90 76 TAN 77 * 78 STO 08 79 X<> L 80 RCL 07 |
81 SIGN 82 * 83 CHS 84 STO 07 85 LBL 01 86 CLX 87 RCL 06 88 9778 E8 89 * 90 STO 06 91 STO T 92 CLX 93 RCL 07 94 SIGN 95 CLX 96 RCL 05 97 END |
( 134 bytes / SIZE
011 )
STACK | INPUTS | OUTPUTS |
T | / | H ( km/s/Mpc ) |
Z | / | p/c2 ( kg/m3 ) |
Y | / | rho ( kg/m3 ) |
X | t | R(t) |
L | / | q |
Where the distances are expressed in light-years and the times in years ( c = 1 )
H = Hubble's "constant" = R' / R
p = pressure
and rho = density
R = scale factor
q = deceleration parameter
Example: With k = +1 ( Spherical Universe ) , A = Rmin = 7 108 L-y , B = 84 109 L-y , P = 116 109 L-y , Lambda = 10 -20 L-y -2
1
STO 00
7 E8 STO 01
84 E9 STO 02
116 E9 STO 03
E-20 STO 04
-If t = 25 109 years 25 E9
XEQ "PULSE" >>>> R = 3.367
E10 = R05
RDN rho = 3.417 E-27 kg/m3
RDN p/c2 = 1.910 E-27 kg/m3
RDN H = 64.519
km/s/Mpc = R06
LASTX q = -0.181 =
R07
and R08 = Cosmological parameter = L = 0.766
Notes:
-In this fictitious Universe, the mass is not constant and the pressure
- even the density - may be negative
-Here are a few other values: ( 9.999... E99 = infinity
)
t | R | rho | p/c^2 | H | q | L |
0 | 7 E8 | 3.660 E-24 | -1.427 E-24 | 0 | -9.999 E99 | +9.999 E99 |
7 E9 | 3.683 E09 | 2.203 E-25 | -1.067 E-25 | 223.556 | -0.595 | 0.064 |
12 E9 | 9.264 E09 | 5.461 E-26 | -2.689 E-26 | 145.311 | -0.479 | 0.151 |
24 E9 | 3.146 E10 | 4.545 E-27 | +1.222 E-27 | 68.121 | -0.216 | 0.687 |
58 E9 | 8.470 E10 | -5.737 E-27 | +7.646 E-27 | 0 | +9.999 E99 | +9.999 E99 |
-With the same constants in R00 thru R03 but R04 = Lambda = 0
we find:
t | R | rho | p/c^2 | H | q | L |
0 | 7 E8 | 3.666 E-24 | -1.433 E-24 | 0 | -9.999 E99 | 0 |
7 E9 | 3.683 E09 | 2.263 E-25 | -1.127 E-25 | 223.556 | -0.595 | 0 |
12 E9 | 9.264 E09 | 6.060 E-26 | -3.288 E-26 | 145.311 | -0.479 | 0 |
24 E9 | 3.146 E10 | 1.053 E-26 | -4.765 E-27 | 68.121 | -0.216 | 0 |
41 E9 | 6.812 E10 | 1.657 E-27 | +7.586 E-28 | 25.997 | +1.549 | 0 |
58 E9 | 8.470 E10 | 2.504 E-28 | +1.659 E-27 | 0 | +9.999 E99 | 0 |
75 E9 | 6.812 E10 | 1.657 E-27 | +7.586 E-28 | -25.997 | +1.549 | 0 |
92 E9 | 3.146 E10 | 1.053 E-26 | -4.765 E-27 | -68.121 | -0.216 | 0 |
104 E9 | 9.264 E09 | 6.060 E-26 | -3.288 E-26 | -145.311 | -0.479 | 0 |
109 E9 | 3.683 E09 | 2.263 E-25 | -1.127 E-25 | -223.556 | -0.595 | 0 |
116 E9 | 7 E8 | 3.666 E-24 | -1.433 E-24 | 0 | -9.999 E99 | 0 |
-Here, rho is always positive.
-After t = 58 E9, the results are symmetric, with a sign change for the
Hubble parameter H ( contraction after expansion )
-During the expansion, the pressure p = 0 for t = 36.1378 E9 ( approximately
)
and the deceleration parameter q =
0 for t = 29 E9 = P / 4 ( exactly ) i-e when R" =
0
Remark:
-Use the following variant if you prefer to get the density parameter
and the pressure parameter ( instead of rho & p/c2 )
01 LBL "PULSE" 02 DEG 03 STO 10 04 PI 05 RCL 03 06 / 07 STO 07 08 R-D 09 * 10 STO 09 11 ST+ X 12 SIN 13 RCL 02 14 * |
15 RCL 07 16 * 17 STO 06 18 X^2 19 RCL 00 20 + 21 RCL 09 22 SIN 23 X^2 24 RCL 02 25 * 26 RCL 01 27 + 28 STO 05 |
29 ST/ 06 30 X^2 31 / 32 RCL 09 33 ST+ X 34 COS 35 RCL 02 36 RCL 07 37 X^2 38 * 39 * 40 RCL 05 41 / 42 ST+ X |
43 STO 07 44 ST+ X 45 + 46 X<>Y 47 RCL 04 48 ST- Z 49 3 50 / 51 STO 08 52 - 53 RCL 06 54 X=0? 55 GTO 00 56 X^2 |
57 ST/ 08 58 ST/ Y 59 CHS 60 ST/ 07 61 ST/ Z 62 GTO 01 63 LBL 00 64 90 65 TAN 66 STO 08 67 R^ 68 CHS 69 SIGN 70 * |
71 R^ 72 SIGN 73 RCL 08 74 ST* Y 75 RCL 07 76 SIGN 77 * 78 CHS 79 STO 07 80 CLX 81 RCL 04 82 X#0? 83 SIGN 84 ST* 08 |
85 LBL 01 86 CLX 87 RCL 06 88 9778 E8 89 * 90 STO 06 91 STO T 92 CLX 93 RCL 07 94 SIGN 95 CLX 96 RCL 05 97 END |
( 128 bytes / SIZE 011
)
STACK | INPUTS | OUTPUTS |
T | / | H ( km/s/Mpc ) |
Z | / | ¶ |
Y | / | OmegaMat |
X | t | R(t) |
L | / | q |
Where the distances are expressed in light-years and the times in years ( c = 1 )
H = Hubble's "constant" = R' /
R
¶ = pressure parameter
= 8 PI G p / ( c2 H2 )
and OmegaMat = density parameter = 8
PI G rho / ( 3 H2 )
R = scale factor
q = deceleration parameter
= - R R" / R'2
Example: With k = +1 ( Spherical Universe ) , A = Rmin = 108 L-y , B = 84 109 L-y , P = 173 109 L-y , Lambda = 10 -20 L-y -2
1
STO 00
1 E8 STO 01
84 E9 STO 02
173 E9 STO 03
E-20 STO 04
-If t = 25 109 years 25 E9
XEQ "PULSE" >>>>
R = 16.256
E9 = R05
---Execution time = 4s---
RDN Omega(mat) = 1.082
RDN ¶
= -0.631
RDN H
= 72.327 km/s/Mpc = R06
LASTX q
= -0.383 = R07
and R08 = Cosmological parameter = L = 0.609
>>> The last 2 versions may be put together if we use a
flag ( for instance F01 ):
Data Registers: • R00 = k ( -1 , 0 or +1 ) ( Registers R00 thru R04 are to be initialized before executing "PULSE" )
• R01 = A = Rmin ( in light-years )
R05 = R
R09: temp
• R02 = B ( in light-years )
R06 = H ( km/s/Mpc )
R10 = t
• R03 = P = period ( in years )
R07 = q = deceleration parameter
• R04 = Lambda = Cosmological constant ( in light-years-2
) R08 = L = Cosmological parameter
Flag: F01
CF 01 -> Y-Z outputs = OmegaMat &
¶
SF 01 -> Y-Z outputs = rho & p / c2
Subroutines: /
01 LBL "PULSE" 02 DEG 03 STO 10 04 PI 05 RCL 03 06 / 07 STO 07 08 R-D 09 * 10 STO 09 11 ST+ X 12 SIN 13 RCL 02 14 * 15 RCL 07 16 * |
17 STO 06 18 X^2 19 RCL 00 20 + 21 RCL 09 22 SIN 23 X^2 24 RCL 02 25 * 26 RCL 01 27 + 28 STO 05 29 ST/ 06 30 X^2 31 / 32 RCL 09 |
33 ST+ X 34 COS 35 RCL 02 36 RCL 07 37 X^2 38 * 39 * 40 RCL 05 41 / 42 ST+ X 43 STO 07 44 ST+ X 45 + 46 CHS 47 X<>Y 48 RCL 04 |
49 ST+ Z 50 3 51 / 52 STO 08 53 - 54 FC? 01 55 GTO 00 56 16702 E2 57 ST/ Z 58 / 59 3 60 * 61 LBL 00 62 RCL 06 63 X=0? 64 GTO 00 |
65 X^2 66 ST/ 08 67 FC? 01 68 ST/ Y 69 FC? 01 70 ST/ Z 71 CHS 72 ST/ 07 73 GTO 01 74 LBL 00 75 CLX 76 90 77 TAN 78 STO 08 79 FS? 01 80 GTO 00 |
81 ENTER 82 R^ 83 SIGN 84 * 85 R^ 86 SIGN 87 RCL 08 88 ST* Y 89 LBL 00 90 RCL 07 91 SIGN 92 * 93 CHS 94 STO 07 95 CLX 96 RCL 04 |
97 X#0? 98 SIGN 99 ST* 08 100 LBL 01 101 CLX 102 RCL 06 103 9778 E8 104 * 105 STO 06 106 STO T 107 CLX 108 RCL 07 109 SIGN 110 CLX 111 RCL 05 112 END |
( 156 bytes / SIZE
011 )
STACK | INPUTS | OUTPUTS |
T | / | H ( km/s/Mpc ) |
Z | / | ¶ or p/c^2 |
Y | / | OmMat or rho |
X | t | R(t) |
L | / | q |
Where the distances are expressed in light-years and the times in years ( c = 1 )
H = Hubble's "constant" = R' /
R
¶ = pressure parameter
= 8 PI G p / ( c2 H2 )
and OmegaMat = density parameter = 8
PI G rho / ( 3 H2 )
R = scale factor
q = deceleration parameter
= - R R" / R'2
Example: With k = +1 ( Spherical Universe ) , A = Rmin = 108 L-y , B = 84 109 L-y , P = 173 109 L-y , Lambda = 10 -20 L-y -2
1
STO 00
1 E8 STO 01
84 E9 STO 02
and t = 25 109 years
173 E9 STO 03
E-20 STO 04
• CF 01
25 E9 XEQ "PULSE" >>>>
R = 16.256
E9 = R05
---Execution time = 4s---
RDN Omega(mat) = 1.082
RDN ¶
= -0.631
RDN H
= 72.327 km/s/Mpc = R06
LASTX q
= -0.383 = R07
and R08 = Cosmological parameter = L = 0.609
• SF 01
25 E9 R/S
>>>> R = 16.256 E9
= R05
---Execution time = 4s---
RDN rho = 1.064 E-26 kg/m3
RDN p/c2 = -2.066 E-27 kg/m3
RDN H = 72.327
km/s/Mpc = R06
LASTX q = -0.383
= R07
and R08 = Cosmological parameter = L = 0.609
Note:
-Though the real Universe is probably different from these models - but
who knows ? -
you can use these programs to explore various pulsing Universes to
get a better fit...
References:
[1] Stamatia Mavridès - "L'Univers relativiste" - Masson
ISBN 2-225-36080-7 ( in French )
[2] Jean Heidmann - "Introduction à la cosmologie" - PUF
( in French )
[3] David F. Crawford - "Curvature Cosmology" - ISBN 1-59942-413-4
or http://www.davidcrawford.bigpondhosting.com/cc2.pdf
[4] J. Pachner - "An Oscillating Isotropic Universe without Singularity"
- Mon. Not. R. astr. Soc. ( 1965 ) 131, 173-176
[5] Hua-Hui Xiong, Yi-Fu Cai, Taotao Qiu, Yun-Song Piao, Xinmin Zhang
- "Oscillating universe with quintom matter"