hp41programs

Dawson

Dawson's Integral for the HP-41


Overview
 

-This program computes   F(x) = e -x^2 §0x  et^2 dt     by a series expansion.
   F(x) = e -x^2 [ x + x3/3 + x5/(5 2!) + x7/(7 3!) + ..... ]
 

Program Listing
 

Data Registers: /
Flags: /
Subroutines: /
 
 

01  LBL "DAW"
02  STO M       
03  X^2
04  STO N
05  1
06  LASTX
07  ENTER^
08  LBL 01
09  CLX
10  RCL M       
11  RCL N
12  *
13  R^
14  ISG T
15  CLX
16  /
17  STO M       
18  R^
19  ST+ X        
20  DSE X
21  /
22  X<>Y
23  ST+ Y
24  X#Y?
25  GTO 01
26  RCL N       
27  E^X
28  /
29  CLA
30  END

 
  ( 49 bytes / SIZE 000 )
 
 

      STACK        INPUTS      OUTPUTS
           X             x          F(x)
           L             /           e x^2

 
Examples:

     1.94  XEQ "DAW"  >>>>  F( 1.94 ) =  0.3140571659     ( 11 seconds )
      10         R/S            >>>>    F(10)    =  0.05025384716   ( 85 seconds )
      15         R/S            >>>>    F(15)    =  0.03340790676     ( 2mn46s )

-For x > 15 , there will be an OUT OF RANGE.
 

Reference:

[1]  Abramowitz and Stegun , "Handbook of Mathematical Functions" -  Dover Publications -  ISBN  0-486-61272-4