hp41programs

Template

Terrestrial Geodesic Distance(4) for the HP-41


Overview
 

1°)  Geodetic Longitudes & Latiudes

   a)  Program#1
   b)  Program#2
   c)  Program#3
   d)  Program#4

2°)  Geocentric Longitudes & Geodetic Latitudes

   a)  Program#1
   b)  Program#2


3°)  Geocentric Longitudes & Parametric Latitudes

4°)  Geocentric Longitudes & Latitudes

   a)  Program(s)#1
   b)  Program(s)#2
   c)  Program#3

   d)  Program#4
   e)  Program#5 ( with great elliptic arc length )
   f)  My favorite Programs

    f1) Program#1
    f2) Program(s)#2


5°)  Transformation of Coordinates

   a)  Geocentric Coordinates <> Geodetic Coordinates
   b)  WGS84 coordinates -> Triaxial Ellipsoid Geocentric Coordinates


Latest Update:
  paragraph 4°)a)



-These programs employ a little generalization of Andoyer's formulae to a triaxial ellipsoid model of the Earth.

-The semi-axes are:

   a = 6378.172 km
   b = 6378.102 km
                                       the longitudes are measured from the equatorial major-axis = 14°92911 West
   c = 6356.752314 km


-I've recently found relatively simple formulae to calculate the geodesic distance on a triaxial ellipsoid model of the Earth.

-With geocentric coordinates, the relative error is smaller than with geodetic coordinates.
-So my favorite programs are in paragraph 4°)f)

-If we compare the precision of this formula with the non-iterative formulae for an ellipsoid of revolution,
  it is more accurate than Andoyer's formula of order 2 but less accurate than Sodano's formula of order 3:
-So, I think it is interesting but it is not perfect.

-Of course, if the points are  ~ antipodal and if the difference between the longitudes is almost 180°, errors may be large.

-However, if we use the program listed in §4°e) as a subroutine of the program listed in "Terrestrial Geodesic Distance(2)" (§5) to minimize the sum of 2 distances,
  we will have a good accuracy, even if the 2 points are nearly antipodal because the error are very small if the difference between the longitudes is <= 90°
-But it is very slow with an HP41: free42 or DM42 are much faster.


1°)  Geodedic Longitudes & Latitudes


      a)  Program#1


-This is one of the shortest programs... but not the best formula !


       Dist ~   a { µ - (f/2) ( A.µ + 3.B Sin µ )
               + (f2/4) [ A ( 4.µ + µ2 Cot µ ) + B ( 6.Sin µ + µ2 / Sin µ ) - A2 ( 15.µ + 15 Sin µ Cos µ + 4 µ2 Cot µ ) / 4 - A.B ( 6.Sin µ + µ2 / Sin µ ) + ( B2/2 ) 15 Sin µ Cos µ ]
               + (f3/8) [ -A ( 1 - A ) (8/6) µ3 + ( B + A Cos µ ) ( µ3 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) ] ( 1 - A )

               +   (f'/2) [ -A' µ - 3.B' Sin µ ]
               +  ( f f'/4 ) ( -6 AB' - 5 A'B - AA'/4 - BB'/2 ) µ }                         f/2 ~ 1/595.543    &    f'/2 ~ 1/182233    &    a = 6378.172

-The angle µ  is computed with:

     Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
     Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

-And A & B and A' & B' are calculated with:

    A = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
    B = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ

    A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
    B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ


Data Registers:   R00 thru R09: temp  R00 = µ  R01 = -A/4  R02 = -B  R08 = -A'  R09 = -B'
Flags: /
Subroutines: /


 

 01 LBL "TGD"
 02 DEG
 03 HR
 04 STO 09
 05 RDN
 06 HR
 07 STO 07
 08 X<>Y
 09 HR
 10 1
 11 STO 04
 12 P-R
 13 STO 00
 14 STO 02          
 15 R^
 16 HR
 17 STO 05
 18 SIN
 19 *
 20 STO 08
 21 ST+ 08
 22 X^2
 23 RCL 09
 24 RCL 04
 25 P-R
 26 STO 06
 27 X<>Y
 28 X<> 07
 29 ST- 05
 30 SIN
 31 *
 32 ST* 08
 33 X^2
 34 +
 35 STO 03
 36 X<>Y
 37 STO 01
 38 ST+ 01
 39 X^2
 40 RCL 07          
 41 ST* 01
 42 ST* 02
 43 X^2
 44 +
 45 X<> 05
 46 RCL 06
 47 P-R
 48 ST* 00
 49 R^
 50 ST* 07
 51 *
 52 RCL 02
 53 -
 54 X^2
 55 X<>Y
 56 X^2
 57 +
 58 ST/ 01
 59 ST/ 03
 60 ST/ 05
 61 ST/ 08
 62 SQRT
 63 RCL 08
 64 RCL 00
 65 RCL 07
 66 +
 67 STO 09          
 68 ST* 08
 69 RCL 03
 70 ST- 08
 71 *
 72 -
 73 X<> 09
 74 STO 03
 75 R-P
 76 X<>Y
 77 D-R
 78 STO 00
 79 R^
 80 /
 81 RCL 01
 82 RCL 03
 83 ST* 01
 84 RCL 05
 85 ST- 01
 86 *
 87 -
 88 STO 02
 89 RCL 01
 90 ST+ 04
 91 RCL 03
 92 *
 93 +
 94 STO 07          
 95 *
 96 STO 05
 97 *
 98 RCL 03
 99 RCL 04
100 ST+ X
101 *
102 RCL 07
103 +
104 *
105 RCL 00
106 ST+ X
107 X^2
108 RCL 01
109 *
110 RCL 04
111 *
112 3
113 /
114 +
115 595.543
116 STO 07        
117 /
118 RCL 05
119 3
120 R^
121 ST/ 03
122 /
123 STO 06
124 RCL 02
125 *
126 STO 05
127 ST+ X
128 +
129 -
130 RCL 04
131 *
132 RCL 01
133 ST+ 05
134 ENTER
135 X^2
136 STO 04
137 RCL 02
138 X^2
139 ST+ X
140 -
141 RCL 03
142 *
143 RCL 04        
144 +
145 ST+ Y
146 4
147 ST* Z
148 ST/ 01
149 /
150 -
151 -
152 RCL 07
153 /
154 RCL 05
155 +
156 RCL 08
157 5
158 *
159 RCL 09
160 2
161 /
162 +
163 RCL 02
164 *
165 RCL 09
166 ST* 06
167 24
168 *
169 RCL 08        
170 ST+ 06
171 +
172 RCL 01
173 *
174 +
175 RCL 07
176 ST/ Z
177 /
178 RCL 06
179 -
180 182233
181 /
182 -
183 RCL 00
184 ST* Y
185 +
186 6378.172
187 *
188 END

 
      ( 248 bytes / SIZE 010 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example1:    λ = +166°08'02"2  ,  β  = -33°51'41"1 
                      λ' = -101°56'06"0  ,  β' = +33°21'22"4
 

     166.08022  ENTER^
    -33.51411   ENTER^
   -101.5606    ENTER^
     33.21224   XEQ "TGD"   >>>>   D = 12138.65759 km                                                      ---Execution time = 11.3s---

-Exact result = 12138.657552.....


Example2:    λ = -24°     ,  β  = -24° 
                      λ' = +144°  ,  β' = +13°

    24   ENTER^  ENTER^
   144  ENTER^
    13   XEQ "TGD"    >>>>    D = 18263.94639 km

-Exact D = 18263.946445....
-In this example, the great elliptic arc length = 18264.171677...


Example3:    λ =      0°    ,  β  = 5° 
                      λ' = +175°  ,  β' = 3°

     0   ENTER^  
     5   ENTER^
   175  ENTER^
     3   XEQ "TGD"    >>>>    D = 18968.18007 km

-Exact D = 18968.180062....


Notes:

-If   | λ - λ' | = 160° ,  the maximum  relative error is about  3.78  10-8 and on average, the relative error is about 0.91 10-8
-If   | λ - λ' | = 120° ,  the maximum  relative error is also ~ 3.78  10-8 and on average, the relative error is about 0.73 10-8

-Here are a few maximum errors ( in centimeters ):

 | λ - λ' | = 120°

 ( +30°, +88° ) ( +150° , -88° )   M = +28.7 cm

 | λ - λ' | = 160°

 ( -65°, +43° )  ( +95° , -27° )   M = +37.9 cm
 ( -22°, +50° ) ( +138° , -55° )  m = -37.8 cm

 | λ - λ' | = 164°

 ( -62°, +48° ) ( +102°, -39° )  M = +51.2 cm
 ( +8° ,  +4° )  ( +172° , +4° )  m = -61.1 cm

 | λ - λ' | = 168°

 ( -84°, +46° ) ( +84° , -38° )  M = +77.7 cm
 ( +6° ,  +3° )  ( +174° , +4° )  m = -105 cm


-If A is close to 1 ( when the geodesics are almost perpendicular to the equator ),
  the precision is often better without the term with  f.f'/4 (!)


      b)  Program#2


-We can find a formula with   ( f f'/4 ) µ ( 1-A )   to get a better precision if  A is close to 1 ( when the geodesics are almost perpendicular to the equator ):


       Dist ~   a { µ - (f/2) ( A.µ + 3.B Sin µ )
               + (f2/4) [ A ( 4.µ + µ2 Cot µ ) + B ( 6.Sin µ + µ2 / Sin µ ) - A2 ( 15.µ + 15 Sin µ Cos µ + 4 µ2 Cot µ ) / 4 - A.B ( 6.Sin µ + µ2 / Sin µ ) + ( B2/2 ) 15 Sin µ Cos µ ]
               + (f3/8) [ -A ( 1 - A ) µ3 + ( B + A Cos µ ) ( µ3 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) ] ( 1 - A )

               +   (f'/2) [ -A' µ - 3.B' Sin µ ]
               +  ( f f'/4 ) µ2 ( 1-A ) ( -6 AB' - 4 A'B - 2 AA' ) }                         f/2 ~ 1/595.543    &    f'/2 ~ 1/182233    &    a = 6378.172

-The angle µ  is computed with:

     Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
     Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

-And A & B and A' & B' are calculated with:

    A = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
    B = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ

    A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
    B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ


Data Registers:   R00 thru R10: temp  R00 = µ  R01 = -A  R02 = A' B  R08 = -A'  R09 = -B'
Flags: /
Subroutines: /


 

 01 LBL "TGD"
 02 DEG
 03 HR
 04 STO 09
 05 RDN
 06 HR
 07 STO 07
 08 X<>Y
 09 HR
 10 1
 11 STO 04
 12 P-R
 13 STO 00
 14 STO 02
 15 R^
 16 HR
 17 STO 05
 18 SIN
 19 *
 20 STO 08
 21 ST+ 08
 22 X^2
 23 RCL 09
 24 RCL 04          
 25 P-R
 26 STO 06
 27 X<>Y
 28 X<> 07
 29 ST- 05
 30 SIN
 31 *
 32 ST* 08
 33 X^2
 34 +
 35 STO 03
 36 X<>Y
 37 STO 01
 38 ST+ 01
 39 X^2
 40 RCL 07
 41 ST* 01
 42 ST* 02
 43 X^2
 44 +
 45 X<> 05
 46 RCL 06
 47 P-R
 48 ST* 00
 49 R^
 50 ST* 07
 51 *
 52 RCL 02          
 53 -
 54 X^2
 55 X<>Y
 56 X^2
 57 +
 58 ST/ 01
 59 ST/ 03
 60 ST/ 05
 61 ST/ 08
 62 SQRT
 63 RCL 08
 64 RCL 00
 65 RCL 07
 66 +
 67 STO 09
 68 ST* 08
 69 RCL 03
 70 ST- 08
 71 *
 72 -
 73 X<> 09
 74 STO 03
 75 R-P
 76 X<>Y
 77 D-R
 78 STO 00          
 79 STO 10
 80 R^
 81 /
 82 RCL 01
 83 RCL 03
 84 ST* 01
 85 RCL 05
 86 ST- 01
 87 *
 88 -
 89 STO 02
 90 RCL 01
 91 ST+ 04
 92 RCL 03
 93 *
 94 +
 95 STO 07
 96 *
 97 STO 05
 98 *
 99 RCL 03          
100 RCL 04
101 ST* 10
102 ST+ X
103 *
104 RCL 07
105 +
106 *
107 RCL 00
108 RCL 01
109 *
110 RCL 10
111 *
112 +
113 595.543
114 STO 07
115 /
116 RCL 05
117 3
118 R^
119 ST/ 03
120 /
121 STO 06
122 RCL 02        
123 *
124 STO 05
125 ST+ X
126 +
127 -
128 RCL 04
129 *
130 RCL 01
131 ST+ 05
132 ENTER
133 X^2
134 STO 04
135 RCL 02
136 X^2
137 ST+ X
138 -
139 RCL 03
140 *
141 RCL 04
142 +
143 ST+ Y
144 4
145 ST* Z
146 /
147 -
148 -
149 RCL 07        
150 /
151 RCL 05
152 +
153 RCL 09
154 ST* 06
155 3
156 *
157 RCL 08
158 ST+ 06
159 ST* 02
160 +
161 RCL 01
162 *
163 RCL 02
164 ST+ X
165 +
166 ST+ X
167 RCL 10
168 *
169 RCL 07
170 ST/ Z
171 /
172 RCL 06        
173 -
174 182233
175 /
176 -
177 RCL 00
178 ST* Y
179 +
180 6378.172
181 *
182 END

 
      ( 243 bytes / SIZE 011 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example1:    λ = +166°08'02"2  ,  β  = -33°51'41"1 
                      λ' = -101°56'06"0  ,  β' = +33°21'22"4
 

     166.08022  ENTER^
    -33.51411   ENTER^
   -101.5606    ENTER^
     33.21224   XEQ "TGD"   >>>>   D = 12138.65757 km                                                      ---Execution time = 10.9s---

-Exact result = 12138.657552.....


Example2:    λ = -24°     ,  β  = -24° 
                      λ' = +144°  ,  β' = +13°

    24   ENTER^  ENTER^
   144  ENTER^
    13   XEQ "TGD"    >>>>    D = 18263.94632 km

-Exact D = 18263.946445....
-In this example, the great elliptic arc length = 18264.171677...


Example3:    λ =      0°    ,  β  = 5° 
                      λ' = +175°  ,  β' = 3°

     0   ENTER^  
     5   ENTER^
   175  ENTER^
     3   XEQ "TGD"    >>>>    D = 18968.17996 km

-Exact D = 18968.180062....


Notes:

-If   | λ - λ' | = 160° ,  the maximum  relative error is about  3.8  10-8 and on average, the relative error is about  10-8

-Here are a few maximum errors ( in centimeters ):

 | λ - λ' | = 120°

 ( +30° , +53° ) ( +150° , -53° )  m = -23.6 cm
 ( +30°, +19° ) ( +150° , +19° )   M = +22.3 cm  

 | λ - λ' | = 160°

 ( -80°, +34° )  ( +80° , -34° )   m = -46.2 cm    
 ( -80°, +54° ) ( +80° , -63° )   M = +43.6 cm

| λ - λ' | = 168°

 ( -84°, +58° ) ( +84° , -52° )  M = +84.6 cm  
 ( +6° ,  +4° )  ( +174° , +3° )  m = -79.1 cm


-The relative precision is a little smaller
-The absolute precision is better if | λ - λ' | = 120° &  | λ - λ' | = 168°  but not if   | λ - λ' | = 160°


      c)  Program#3


-We can also use the mean radius of the equator ( 6378.137 instead of 6378.172 )


-Formula:

   Dist ~   a' µ { 1 + (f/2) ( -A - 3.B (Sin µ)/µ )
               + (f2/4) [ A ( 4 + µ Cot µ ) + B ( 6(Sin µ)/µ + µ / Sin µ ) - A2 ( 15 + 15 (Sin µ) (Cos µ)/µ + 4 µ Cot µ ) / 4 - A.B ( 6(Sin µ)/µ + µ / Sin µ ) + ( B2/2 ) 15 (Sin µ) (Cos µ)/µ ]
               + (f3/8) [ ( -A ( 1 - A ) (8/6) µ + ( B + A Cos µ ) ( µ2 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) ) ( 1 - A )
                           + B2 (3A-3) + B ( - 3A(1-A) Cos µ + (1-A) (7A-2) µ/Sin µ ) + A(1-A) (7A-2) µ Cot µ
                           + ( 1-A ) ( A ( 7A-2 )sqrt(7) + ( 11B2 - 8A2 ) (Sin µ) (Cos µ)/µ  ) ]

               +   (f'/2) [ -A" - 3.B" (Sin µ)/µ ]
               +  ( f f'/4 ) ( -3 AB" - 3 A"B - AA"/2  )  µ  }                          f/2 ~ 1/596.51444    &    f'/2 ~ 1/364465    &    a' = 6378.137 km

              Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
              Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

              A" = [ cos2 β ( Sin2 λ - Cos2 λ )  + cos2 β' ( Sin2 λ' - Cos2 λ' ) + 2  cos β cos β' Cos ( λ + λ' )  Cos µ ] / Sin2 µ
              B" = [ ( cos2 β ( Sin2 λ - Cos2 λ )  + cos2 β' ( Sin2 λ' - Cos2 λ' ) ) Cos  µ  + 2 cos β cos β' Cos ( λ + λ' ) ] / Sin2 µ

              A  = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
              B  = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ


-In fact, we can express  -A" = 2 ( 1 - A' ) - A  and   -B" = -2 B' - B    with:

    A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
    B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ

-We save 0.5 second in execution time ( same numbers of bytes )


Data Registers:   R00 thru R12: temp  R01 = -A  R02 = -B  R08 = -A"  R09 = -3.B"
Flags: /
Subroutines: /


 

 01 LBL "TGD"
 02 DEG
 03 HR
 04 STO 09
 05 RDN
 06 HR
 07 STO 07
 08 X<>Y
 09 HR
 10 1
 11 STO 04
 12 P-R
 13 STO 00
 14 STO 02
 15 R^
 16 HR
 17 STO 05
 18 SIN
 19 *
 20 STO 08
 21 ST+ 08
 22 X^2
 23 RCL 09
 24 RCL 04          
 25 P-R
 26 STO 06
 27 X<>Y
 28 X<> 07
 29 ST- 05
 30 SIN
 31 *
 32 ST* 08
 33 X^2
 34 +
 35 STO 03
 36 X<>Y
 37 STO 01
 38 ST+ 01
 39 X^2
 40 RCL 07
 41 ST* 01
 42 ST* 02
 43 X^2
 44 +
 45 X<> 05
 46 RCL 06
 47 P-R
 48 ST* 00
 49 R^
 50 ST* 07
 51 *
 52 RCL 02          
 53 -
 54 X^2
 55 X<>Y
 56 X^2
 57 +
 58 ST/ 01
 59 ST/ 03
 60 ST/ 05
 61 ST/ 08
 62 SQRT
 63 RCL 08
 64 RCL 00
 65 RCL 07
 66 +
 67 STO 09
 68 ST* 08
 69 RCL 03
 70 ST- 08
 71 *
 72 -
 73 ST+ X
 74 X<> 09
 75 STO 03
 76 R-P
 77 RCL 08
 78 +
 79 ST+ X
 80 STO 08
 81 X<>Y
 82 D-R
 83 STO 00          
 84 R^
 85 /
 86 STO 06
 87 RCL 01
 88 RCL 03
 89 ST* 01
 90 RCL 05
 91 ST- 01
 92 *
 93 -
 94 STO 02
 95 ST+ 09
 96 RCL 01
 97 ST+ 04
 98 ST+ 08
 99 RCL 03
100 *
101 +
102 STO 05
103 LASTX
104 RCL 03
105 +
106 ST+ X
107 +
108 *
109 RCL 01
110 7
111 *
112 2
113 +
114 STO 07        
115 +
116 *
117 RCL 02
118 3
119 ST* 09
120 *
121 STO 10
122 STO 12
123 -
124 RCL 05
125 *
126 RCL 07
127 7
128 SQRT
129 *
130 RCL 00
131 ST+ X
132 X^2
133 RCL 04
134 *
135 3
136 /
137 +
138 RCL 01
139 *
140 +
141 RCL 10
142 RCL 02
143 ST* Y
144 X^2
145 STO 07        
146 RCL 01
147 X^2
148 STO 11
149 -
150 ST+ 07
151 8
152 *
153 +
154 RCL 03
155 RCL 06
156 ST* 05
157 ST/ 10
158 /
159 ST* 07
160 *
161 +
162 596.51444
163 STO 03
164 /
165 RCL 05
166 -
167 RCL 10
168 ST+ X
169 -
170 RCL 04
171 *
172 RCL 01
173 ST+ 10
174 RCL 07
175 RCL 11        
176 -
177 ST- Y
178 4
179 ST* Z
180 /
181 +
182 -
183 RCL 03
184 /
185 RCL 10
186 +
187 RCL 09
188 RCL 08
189 ST* 12
190 2
191 /
192 +
193 RCL 01
194 *
195 RCL 12
196 +
197 RCL 00
198 *
199 RCL 03
200 ST/ Z
201 /
202 RCL 08
203 -
204 RCL 09
205 RCL 06        
206 /
207 -
208 364465
209 /
210 -
211 RCL 00
212 ST* Y
213 +
214 6378.137
215 *
216 END

 
      ( 283 bytes / SIZE 013 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example:    λ = +166°08'02"2  ,  β  = -33°51'41"1 
                    λ' = -101°56'06"0  ,  β' = +33°21'22"4
 

     166.08022  ENTER^
    -33.51411   ENTER^
   -101.5606    ENTER^
     33.21224   XEQ "TGD"   >>>>   D = 12138.65757 km                                                      ---Execution time = 12.4 s--- 

-Exact  D = 12138.657552....


Notes:

-The precision becomes:

 | λ - λ' | = 120°

 ( +30°, +70° ) ( +150° , +70° )  m = -17.9 cm
 ( +30°, +28° ) ( +150° , +27° )  M = +15.2 cm

 | λ - λ' | = 160°

 ( -80°, +67° )  ( +80° , -72° )   M = +23.6 cm
 ( +10°, +66° ) ( +170° , -71° )  m = -21.8 cm

 | λ - λ' | = 168°

 ( -39°, +42° ) ( +129° , -38° )  M = +52.5 cm
 ( +6° , +65° ) ( +174° , -61° )  m = -50.9 cm

 | λ - λ' | = 170°

 ( -85°, +48° ) ( +85° , -43° )  M = +70.8 cm
 ( +5° , +57° ) ( +175° , -61° )  m = -69.5 cm

-Though the absolute error is smaller, the relative error may be larger:
-If   | λ - λ' | = 160° ,  the maximum  relative error is about  7.4  10-8 & on average, the relative error is ~ 0.94 10-8


      d)  Program#4


-Here is a formula with   ( f f'/4 ) µ ( 1-A )   to get a better precision if  A is close to 1 ( when the geodesics are almost perpendicular to the equator ):


-Formula:

   Dist ~   a' µ { 1 + (f/2) ( -A - 3.B (Sin µ)/µ )
               + (f2/4) [ A ( 4 + µ Cot µ ) + B ( 6(Sin µ)/µ + µ / Sin µ ) - A2 ( 15 + 15 (Sin µ) (Cos µ)/µ + 4 µ Cot µ ) / 4 - A.B ( 6(Sin µ)/µ + µ / Sin µ ) + ( B2/2 ) 15 (Sin µ) (Cos µ)/µ ]
               + (f3/8) [ ( -A ( 1 - A ) (8/6) µ + ( B + A Cos µ ) ( µ2 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) ) ( 1 - A )
                           + B2 (3A-3) + B ( - 3A(1-A) Cos µ + (1-A) (7A-2) µ/Sin µ ) + A(1-A) (7A-2) µ Cot µ
                           + ( 1-A ) ( A ( 7A-2 )sqrt(7) + ( 11B2 - 8A2 ) (Sin µ) (Cos µ)/µ  ) ]

               +   (f'/2) [ -A" - 3.B" (Sin µ)/µ ]
               +  ( f f'/4 ) ( -8 AB" - 5 A"B - 6 AA"  )  µ ( 1-A )  }                          f/2 ~ 1/596.51444    &    f'/2 ~ 1/364465    &    a' = 6378.137 km

              Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
              Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

              A  = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
              B  = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ

            -A" = 2 ( 1 - A' ) - A  and   -B" = -2 B' - B    with:

    A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
    B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ


Data Registers:   R00 thru R12: temp  R01 = -A  R02 = A".B  R08 = -A"  R09 = -B"
Flags: /
Subroutines: /


 

 01 LBL "TGD"
 02 DEG
 03 HR
 04 STO 09
 05 RDN
 06 HR
 07 STO 07
 08 X<>Y
 09 HR
 10 1
 11 STO 04
 12 P-R
 13 STO 00
 14 STO 02
 15 R^
 16 HR
 17 STO 05
 18 SIN
 19 *
 20 STO 08          
 21 ST+ 08
 22 X^2
 23 RCL 09
 24 RCL 04
 25 P-R
 26 STO 06
 27 X<>Y
 28 X<> 07
 29 ST- 05
 30 SIN
 31 *
 32 ST* 08
 33 X^2
 34 +
 35 STO 03
 36 X<>Y
 37 STO 01
 38 ST+ 01
 39 X^2
 40 RCL 07
 41 ST* 01
 42 ST* 02
 43 X^2
 44 +
 45 X<> 05
 46 RCL 06
 47 P-R
 48 ST* 00
 49 R^
 50 ST* 07
 51 *
 52 RCL 02          
 53 -
 54 X^2
 55 X<>Y
 56 X^2
 57 +
 58 ST/ 01
 59 ST/ 03
 60 ST/ 05
 61 ST/ 08
 62 SQRT
 63 RCL 08
 64 RCL 00
 65 RCL 07
 66 +
 67 STO 09
 68 ST* 08
 69 RCL 03
 70 ST- 08
 71 *
 72 -
 73 ST+ X
 74 X<> 09
 75 STO 03
 76 R-P
 77 RCL 08
 78 +
 79 ST+ X
 80 STO 08
 81 X<>Y
 82 D-R
 83 STO 00          
 84 R^
 85 /
 86 STO 06
 87 RCL 01
 88 RCL 03
 89 ST* 01
 90 RCL 05
 91 ST- 01
 92 *
 93 -
 94 STO 02
 95 ST+ 09
 96 RCL 01
 97 ST+ 04
 98 ST+ 08
 99 RCL 03
100 *
101 +
102 STO 05
103 LASTX
104 RCL 03
105 +
106 ST+ X
107 +
108 *
109 RCL 01
110 7
111 *
112 2
113 +
114 STO 07        
115 +
116 *
117 RCL 02
118 3
119 *
120 STO 10
121 -
122 RCL 05
123 *
124 RCL 07
125 7
126 SQRT
127 *
128 RCL 00
129 ST+ X
130 X^2
131 RCL 04
132 *
133 3
134 /
135 +
136 RCL 01
137 *
138 +
139 RCL 10
140 RCL 02
141 ST* Y
142 X^2
143 STO 07
144 RCL 01
145 X^2
146 STO 11        
147 -
148 ST+ 07
149 8
150 *
151 +
152 RCL 03
153 RCL 06
154 ST* 05
155 ST/ 10
156 /
157 ST* 07
158 *
159 +
160 596.51444
161 STO 03
162 /
163 RCL 05
164 -
165 RCL 10
166 ST+ X
167 -
168 RCL 04
169 *
170 RCL 01
171 ST+ 10
172 RCL 07
173 RCL 11
174 -
175 ST- Y
176 4
177 ST* Z
178 /
179 +
180 -
181 RCL 03        
182 /
183 RCL 10
184 +
185 RCL 08
186 ST* 02
187 6
188 *
189 RCL 09
190 8
191 *
192 +
193 RCL 01
194 *
195 RCL 02
196 5
197 *
198 +
199 RCL 00
200 *
201 RCL 04
202 *
203 RCL 03
204 ST/ Z
205 /
206 RCL 08
207 -
208 RCL 09
209 3
210 *
211 RCL 06        
212 /
213 -
214 364465
215 /
216 -
217 RCL 00
218 ST* Y
219 +
220 6378.137
221 *
222 END

 
      ( 288 bytes / SIZE 012 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example:    λ = +166°08'02"2  ,  β  = -33°51'41"1 
                    λ' = -101°56'06"0  ,  β' = +33°21'22"4
 

     166.08022  ENTER^
    -33.51411   ENTER^
   -101.5606    ENTER^
     33.21224   XEQ "TGD"   >>>>   D = 12138.65755 km                                                      ---Execution time = 12.7 s--- 

-Exact  D = 12138.657552....


Notes:

-Unfortunately, if   | λ - λ' | = 160° ,  the maximum  relative error remains about 7.2 10-8
-And the absolute errors become:

| λ - λ' | = 160°

 ( -80°, +66° )  ( +80° , -59° )   M = +41.0 cm
 ( +10°, +66° ) ( +170° , -59° )  m = -40.4 cm

 | λ - λ' | = 162°

 ( -82°, +63° ) ( +82° , -57° )  M = +52.9 cm
 ( +8° , +64° ) ( +172° , -58° )  m = -52.0 cm


2°)  Geocentric Longitudes & Geodetic Latitudes


      a)  Program#1


-This program takes the geocentric longitudes and geodetic latitudes on WGS84 ( ellipsoid of revolution ) ( cf JPL )
  and computes the geodesic distance on the triaxial ellipsoid.


-Formula:

   Dist ~   a' µ { 1 + (f/2) ( -A - 3.B (Sin µ)/µ )
               + (f2/4) [ A ( 4 + µ Cot µ ) + B ( 6(Sin µ)/µ + µ / Sin µ ) - A2 ( 15 + 15 (Sin µ) (Cos µ)/µ + 4 µ Cot µ ) / 4 - A.B ( 6(Sin µ)/µ + µ / Sin µ ) + ( B2/2 ) 15 (Sin µ) (Cos µ)/µ ]
               + (f3/8) [ ( -A ( 1 - A ) (8/6) µ + ( B + A Cos µ ) ( µ2 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) ) ( 1 - A )
                           + B2 (3A-3) + B ( - 3A(1-A) Cos µ + (1-A) (7A-2) µ/Sin µ ) + A(1-A) (7A-2) µ Cot µ
                           + ( 1-A ) ( A ( 7A-2 )sqrt(7) + ( 11B2 - 8A2 ) (Sin µ) (Cos µ)/µ  ) ]

               +   (f'/2) [ -A" + B" (Sin µ)/µ ]
               +  ( f f'/4 ) ( -4 AB" - 3 A"B - 3.5 AA" ) }                         f/2 ~ 1/596.51444    &    f'/2 ~ 1/364465    &    a' = 6378.137 km

              Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
              Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

                 -A" = 2 ( 1 - A' ) - A  
                 -B" = -2 B' - B                with:

              A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
              B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ

              A  = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
              B  = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ


Data Registers:   R00 thru R09: temp  R01 = A.A"  R02 = -B  R08 = -A"  R09 = -B"
Flags: /
Subroutines: /


 

 01 LBL "TGB"
 02 DEG
 03 HR
 04 STO 09
 05 RDN
 06 HR
 07 STO 07
 08 X<>Y
 09 HR
 10 1
 11 STO 04
 12 P-R
 13 STO 00
 14 STO 02
 15 R^
 16 HR
 17 STO 05
 18 SIN
 19 *
 20 STO 08
 21 ST+ 08
 22 X^2
 23 RCL 09
 24 RCL 04
 25 P-R
 26 STO 06          
 27 X<>Y
 28 X<> 07
 29 ST- 05
 30 SIN
 31 *
 32 ST* 08
 33 X^2
 34 +
 35 STO 03
 36 X<>Y
 37 STO 01
 38 ST+ 01
 39 X^2
 40 RCL 07
 41 ST* 01
 42 ST* 02
 43 X^2
 44 +
 45 X<> 05
 46 RCL 06
 47 P-R
 48 ST* 00
 49 R^
 50 ST* 07
 51 *
 52 RCL 02          
 53 -
 54 X^2
 55 X<>Y
 56 X^2
 57 +
 58 ST/ 01
 59 ST/ 03
 60 ST/ 05
 61 ST/ 08
 62 SQRT
 63 RCL 08
 64 RCL 00
 65 RCL 07
 66 +
 67 STO 09
 68 ST* 08
 69 RCL 03
 70 ST- 08
 71 *
 72 -
 73 ST+ X
 74 X<> 09
 75 STO 03
 76 R-P
 77 RCL 08
 78 +
 79 ST+ X
 80 STO 08
 81 X<>Y
 82 D-R
 83 STO 00          
 84 R^
 85 /
 86 STO 06
 87 RCL 01
 88 RCL 03
 89 ST* 01
 90 RCL 05
 91 ST- 01
 92 *
 93 -
 94 STO 02
 95 ST+ 09
 96 RCL 01
 97 ST+ 04
 98 ST+ 08
 99 RCL 03
100 *
101 +
102 STO 05
103 LASTX
104 RCL 03
105 +
106 ST+ X
107 +
108 *
109 RCL 01
110 7
111 *
112 2
113 +
114 STO 07        
115 +
116 *
117 RCL 02
118 3
119 *
120 STO 10
121 -
122 RCL 05
123 *
124 RCL 07
125 7
126 SQRT
127 *
128 RCL 00
129 ST+ X
130 X^2
131 RCL 04
132 *
133 3
134 /
135 +
136 RCL 01
137 *
138 +
139 RCL 10
140 RCL 02
141 ST* Y
142 X^2
143 STO 07
144 RCL 01
145 X^2
146 STO 11        
147 -
148 ST+ 07
149 8
150 *
151 +
152 RCL 03
153 RCL 06
154 ST* 05
155 ST/ 10
156 /
157 ST* 07
158 *
159 +
160 596.51444
161 STO 03
162 /
163 RCL 05
164 -
165 RCL 10
166 ST+ X
167 -
168 RCL 04
169 *
170 RCL 01
171 ST+ 10
172 RCL 07
173 RCL 11
174 -
175 ST- Y
176 4
177 ST* Z
178 /
179 +
180 -
181 RCL 03        
182 /
183 RCL 10
184 +
185 RCL 01
186 RCL 09
187 *
188 4
189 *
190 RCL 02
191 RCL 08
192 ST* 01
193 *
194 3
195 *
196 +
197 RCL 01
198 3.5
199 *
200 +
201 RCL 03
202 ST/ Z
203 /
204 RCL 08
205 -
206 RCL 09
207 RCL 06
208 /
209 +
210 364465
211 /
212 -
213 RCL 00        
214 ST* Y
215 +
216 6378.137
217 *
218 END

 
      ( 286 bytes / SIZE 012 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example:    λ = +166°08'02"2  ,  β  = -33°51'41"1 
                    λ' = -101°56'06"0  ,  β' = +33°21'22"4
 

     166.08022  ENTER^
    -33.51411   ENTER^
   -101.5606    ENTER^
     33.21224   XEQ "TGB"   >>>>   D = 12138.70169 km                                                      ---Execution time = 12.5s--- 

-Exact  D = 12138.701763....


Notes:

-The precision is:

-If   | λ - λ' | = 168° ,  the maximum error is about 73 cm.
-If   | λ - λ' | = 160° ,  the maximum error is about 32 cm
-If   | λ - λ' | = 120° ,  the maximum error is about 20 cm.

-If   | λ - λ' | = 160° ,  the maximum  relative error is about  5.2  10-8

>>> If we replace   ( f f'/4 ) ( -4 AB' - 3 A'B - 3.5 AA' )    by    ( f f'/4 ) µ ( - AB' + 0.75 A'B - 2 AA' )   the precision becomes:

-If   | λ - λ' | = 168° ,  the maximum error is about 76 cm.
-If   | λ - λ' | = 160° ,  the maximum error is about 36 cm
-If   | λ - λ' | = 120° ,  the maximum error is about 15 cm.

-If   | λ - λ' | = 160° ,  the maximum  relative error is about  3.3 10-8

 ( Replace lines 185 to 200 by   RCL 01   RCL 09  *   RCL 02   RCL 08   ST* 01   *   .75   *   -   RCL 01   ST+ X   +   RCL 00   *


      b)  Program#2


-Formula:

   Dist ~   a' µ { 1 + (f/2) ( -A - 3.B (Sin µ)/µ )
               + (f2/4) [ A ( 4 + µ Cot µ ) + B ( 6(Sin µ)/µ + µ / Sin µ ) - A2 ( 15 + 15 (Sin µ) (Cos µ)/µ + 4 µ Cot µ ) / 4 - A.B ( 6(Sin µ)/µ + µ / Sin µ ) + ( B2/2 ) 15 (Sin µ) (Cos µ)/µ ]
               + (f3/8) [ ( -A ( 1 - A ) (8/6) µ + ( B + A Cos µ ) ( µ2 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) ) ( 1 - A )
                           + B2 (3A-3) + B ( - 3A(1-A) Cos µ + (1-A) (7A-2) µ/Sin µ ) + A(1-A) (7A-2) µ Cot µ
                           + ( 1-A ) ( A ( 7A-2 )sqrt(7) + ( 11B2 - 8A2 ) (Sin µ) (Cos µ)/µ  ) ]

               +   (f'/2) [ -A" + B" (Sin µ)/µ ]
               +  ( f f'/4 ) µ ( 1 - A ) ( -4 AB" - 3 A"B - 2 AA" ) }                         f/2 ~ 1/596.51444    &    f'/2 ~ 1/364465    &    a' = 6378.137 km

              Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
              Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

                 -A" = 2 ( 1 - A' ) - A  
                 -B" = -2 B' - B                with:

              A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
              B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ

              A  = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
              B  = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ


Data Registers:   R00 thru R09: temp  R01 = -A  R02 = A".B  R08 = -A"  R09 = -B"
Flags: /
Subroutines: /


 

 01 LBL "TGB"
 02 DEG
 03 HR
 04 STO 09
 05 RDN
 06 HR
 07 STO 07
 08 X<>Y
 09 HR
 10 1
 11 STO 04
 12 P-R
 13 STO 00
 14 STO 02
 15 R^
 16 HR
 17 STO 05
 18 SIN
 19 *
 20 STO 08          
 21 ST+ 08
 22 X^2
 23 RCL 09
 24 RCL 04
 25 P-R
 26 STO 06
 27 X<>Y
 28 X<> 07
 29 ST- 05
 30 SIN
 31 *
 32 ST* 08
 33 X^2
 34 +
 35 STO 03
 36 X<>Y
 37 STO 01
 38 ST+ 01
 39 X^2
 40 RCL 07
 41 ST* 01
 42 ST* 02
 43 X^2
 44 +
 45 X<> 05
 46 RCL 06
 47 P-R
 48 ST* 00
 49 R^
 50 ST* 07
 51 *
 52 RCL 02          
 53 -
 54 X^2
 55 X<>Y
 56 X^2
 57 +
 58 ST/ 01
 59 ST/ 03
 60 ST/ 05
 61 ST/ 08
 62 SQRT
 63 RCL 08
 64 RCL 00
 65 RCL 07
 66 +
 67 STO 09
 68 ST* 08
 69 RCL 03
 70 ST- 08
 71 *
 72 -
 73 ST+ X
 74 X<> 09
 75 STO 03
 76 R-P
 77 RCL 08
 78 +
 79 ST+ X
 80 STO 08
 81 X<>Y
 82 D-R
 83 STO 00          
 84 R^
 85 /
 86 STO 06
 87 RCL 01
 88 RCL 03
 89 ST* 01
 90 RCL 05
 91 ST- 01
 92 *
 93 -
 94 STO 02
 95 ST+ 09
 96 RCL 01
 97 ST+ 04
 98 ST+ 08
 99 RCL 03
100 *
101 +
102 STO 05
103 LASTX
104 RCL 03
105 +
106 ST+ X
107 +
108 *
109 RCL 01
110 7
111 *
112 2
113 +
114 STO 07        
115 +
116 *
117 RCL 02
118 3
119 *
120 STO 10
121 -
122 RCL 05
123 *
124 RCL 07
125 7
126 SQRT
127 *
128 RCL 00
129 ST+ X
130 X^2
131 RCL 04
132 *
133 3
134 /
135 +
136 RCL 01
137 *
138 +
139 RCL 10
140 RCL 02
141 ST* Y
142 X^2
143 STO 07
144 RCL 01        
145 X^2
146 STO 11
147 -
148 ST+ 07
149 8
150 *
151 +
152 RCL 03
153 RCL 06
154 ST* 05
155 ST/ 10
156 /
157 ST* 07
158 *
159 +
160 596.51444
161 STO 03
162 /
163 RCL 05
164 -
165 RCL 10
166 ST+ X
167 -
168 RCL 04
169 *
170 RCL 01
171 ST+ 10
172 RCL 07
173 RCL 11        
174 -
175 ST- Y
176 4
177 ST* Z
178 /
179 +
180 -
181 RCL 03
182 /
183 RCL 10
184 +
185 RCL 09
186 ST+ X
187 RCL 08
188 ST* 02
189 +
190 ST+ X
191 RCL 01
192 *
193 RCL 02
194 3
195 *
196 +
197 RCL 00
198 *
199 RCL 04
200 *
201 RCL 03
202 ST/ Z
203 /
204 RCL 08        
205 -
206 RCL 09
207 RCL 06
208 /
209 +
210 364465
211 /
212 -
213 RCL 00
214 ST* Y
215 +
216 6378.137
217 *
218 END

 
      ( 286 bytes / SIZE 012 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example:    λ = +166°08'02"2  ,  β  = -33°51'41"1 
                    λ' = -101°56'06"0  ,  β' = +33°21'22"4
 

     166.08022  ENTER^
    -33.51411   ENTER^
   -101.5606    ENTER^
     33.21224   XEQ "TGB"   >>>>   D = 12138.70168 km                                                      ---Execution time = 12.4s--- 

-Exact  D = 12138.701763....


Notes:

-If   | λ - λ' | = 160° ,  the maximum  relative error is about  3.8  10-8  and the root-mean-square relative error is ~ 10-8

-Here are a few maximum errors ( in centimeters ):

 | λ - λ' | = 120°

 ( -60°, +37° )   ( +60° , -37° )   m = -22.1 cm
 ( +30°, +36° ) ( +150° , -22° )   M = +14.2 cm

 | λ - λ' | = 160°

 ( -80°, +53° )  ( +80° , -62° )   M = +38.2 cm
 ( +10°, +63° ) ( +170° , -54° )  m = -38.7 cm

 | λ - λ' | = 164°

 ( -82°, +49° ) ( +82° , -57° )  M = +52.6 cm
 ( +8° , +55° ) ( +172° , -62° )  m = -52.3 cm

 | λ - λ' | = 168°

 ( -84°, +48° ) ( +84° , -56° )  M = +78.1 cm
 ( +6° , +52° ) ( +174° , -58° )  m = -76.9 cm


3°)  Geocentric Longitudes & Parametric Latitudes


-This program takes the geocentric longitudes & latitudes and computes the parametric latitudes ( WGS84 )
-Then it uses the Andoyer's formula of order 3 and 2 terms with  f'/2 & f.f'/4

>>> If you want to use the geodetic latitudes, simply replace lines 23 & 31 ( * )  by   /  


Formula:


   Dist / ( a' µ )  ~ 1 - (f/2) ( A + B ( Sin µ ) / µ )    
                             + (f2/4) [ ( 1 - A ) ( µ / Sin µ ) ( B + A Cos µ ) + (1/2) [ ( A2/2 ) ( 1 + (Sin µ  Cos µ) / µ ) - B2 (Sin µ  Cos µ) / µ ) ) ]
                             + (f3/8) { ( 1 - A ) { B2 + A [ B Cos µ - ( 1 - A ) (8/6) µ2 ] + ( B + A Cos µ ) ( µ / Sin µ ) [ - ( 3 A - 2 ) + ( µ / Sin µ ) ( ( 3 A - 2 ) Cos µ + B ) ] }
                                                 + [ B3 ( (2/3) Sin2 µ - 1/2 )  + ( A/2 - 1 ) B2 Cos µ ] (Sin µ) / µ ) - (A2/2) [ ( A/2 - 1 ) ( 1 + (Sin µ  Cos µ) / µ ) - B (Sin µ  Cos2 µ) / µ ] }

               +   (f'/2) [ -A"+ B" (Sin µ)/µ ]
               +  ( f f'/4 ) µ (1-A) [ µ ( - AB"  - A"B - 2 AA"  ) -  BB" ]                          f/2 ~ 1/596.51444    &    f'/2 ~ 1/364465    &    a' = 6378.137 km

          Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
          Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

          A  = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
          B  = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ

                 -A" = 2 ( 1 - A' ) - A  
                 -B" = -2 B' - B                with:

          A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
          B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ


Data Registers:   R00 thru R09: temp  R00 = µ  R01 = A  R02 =  -B.B"   R11 = -A"  R12 = -B"
Flags: /
Subroutines: /


 

 01 LBL "TGCB"
 02 DEG
 03 HR
 04 STO 09
 05 X<>Y
 06 HR
 07 STO 07
 08 R^
 09 HR
 10 STO 01
 11 R^
 12 HR
 13 1
 14 STO 04
 15 P-R
 16 LASTX
 17 298.25722
 18 STO 10
 19 ST+ 10
 20 1/X
 21 -
 22 STO 08
 23 *
 24 R-P
 25 X<>Y
 26 STO 06
 27 RCL 09
 28 RCL 04          
 29 P-R
 30 RCL 08
 31 *
 32 R-P
 33 X<>Y
 34 STO 09
 35 RCL 06
 36 RCL 04
 37 P-R
 38 STO 00
 39 STO 05
 40 RCL 01
 41 SIN
 42 *
 43 STO 08
 44 ST+ 08
 45 X^2
 46 RCL 09
 47 RCL 04
 48 P-R
 49 STO 06
 50 X<>Y
 51 X<> 07
 52 ST- 01
 53 SIN
 54 *
 55 ST* 08
 56 X^2
 57 +
 58 STO 03
 59 X<>Y
 60 STO 02
 61 ST+ 02
 62 X^2
 63 RCL 07          
 64 ST* 02
 65 ST* 05
 66 X^2
 67 +
 68 X<> 01
 69 RCL 06
 70 P-R
 71 ST* 00
 72 R^
 73 ST* 07
 74 *
 75 RCL 05
 76 -
 77 X^2
 78 X<>Y
 79 X^2
 80 +
 81 ST/ 01
 82 ST/ 02
 83 ST/ 03
 84 ST/ 08
 85 SQRT
 86 STO 09
 87 RCL 08
 88 RCL 00
 89 RCL 07
 90 +
 91 STO 12
 92 ST* 08
 93 RCL 03
 94 ST- 08
 95 *
 96 -
 97 ST+ X
 98 X<> 12
 99 STO 03
100 R-P
101 RCL 08
102 +
103 ST+ X
104 STO 11        
105 X<>Y
106 D-R
107 STO 00
108 R^
109 /
110 STO 06
111 RCL 01
112 RCL 02
113 RCL 03
114 ST* 01
115 *
116 -
117 ST- 04
118 ST- 11
119 X<> 01
120 RCL 02
121 -
122 STO 02
123 ST- 12
124 RCL 01
125 RCL 03
126 *
127 +
128 *
129 STO 08
130 RCL 01
131 3
132 *
133 2
134 -
135 STO 07
136 RCL 03
137 *
138 RCL 02
139 +
140 R^
141 *
142 RCL 07        
143 -
144 *
145 RCL 02
146 RCL 03
147 *
148 RCL 00
149 ST+ X
150 X^2
151 RCL 04
152 *
153 3
154 /
155 -
156 RCL 01
157 *
158 +
159 RCL 02
160 X^2
161 STO 07
162 +
163 RCL 04
164 ST* 08
165 *
166 RCL 09
167 X^2
168 1.5
169 ST/ Y
170 FRC
171 -
172 RCL 02
173 *
174 RCL 01
175 2
176 ST- Y
177 /
178 STO 09
179 RCL 03        
180 *
181 +
182 RCL 07
183 *
184 RCL 06
185 /
186 +
187 RCL 03
188 RCL 06
189 /
190 ST* 03
191 ST* 07
192 1
193 +
194 STO 05
195 RCL 09
196 *
197 RCL 02
198 RCL 03
199 *
200 -
201 RCL 01
202 X^2
203 2
204 /
205 ST* 05
206 *
207 -
208 RCL 10
209 /
210 RCL 05
211 RCL 07        
212 -
213 2
214 /
215 +
216 RCL 08
217 +
218 RCL 10
219 /
220 RCL 02
221 RCL 06
222 /
223 RCL 01
224 +
225 -
226 RCL 02
227 RCL 11
228 ST* Y
229 ST+ X
230 RCL 12
231 ST* 02
232 +
233 RCL 01
234 *
235 +
236 RCL 00
237 ST* 04
238 *
239 RCL 02
240 +
241 RCL 04
242 *
243 RCL 10
244 ST/ Z
245 /
246 RCL 11
247 +
248 RCL 12        
249 RCL 06
250 /
251 -
252 364465
253 /
254 +
255 RCL 00
256 ST* Y
257 +
258 6378.137
259 *
260 END

 
      ( 329 bytes / SIZE 013 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example1:    λ = +166°08'02"2  ,  β  = -33°41'00"9    ( with geocentric latitudes )
                      λ' = -101°56'06"0  ,  β' = +33°10'47"0
 

     166.08022   ENTER^
    -33.41009     ENTER^
   -101.56060    ENTER^
     33.10470     XEQ "TGCB"   >>>>   D = 12138.70246 km                                                      ---Execution time = 16s---


Example2:     λ = +166°08'02"2  ,  β  = -33°51'41"1   ( with geodetic latitudes )
                       λ' = -101°56'06"0  ,  β' = +33°21'22"4

-After replacing lines 23 & 31 with  /

     166.08022   ENTER^
    -33.51411     ENTER^
   -101.56060    ENTER^
     33.21224     XEQ "TGCB"   >>>>   D = 12138.70173 km


Notes:

-If   | λ - λ' | = 160° ,  the maximum  relative error is about  2.22 10-8  and the root-mean-square relative error is ~ 0.73 10-8
-If   | λ - λ' | = 120° ,  the root-mean-square relative error is ~ 0.36 10-8

-Here are a few maximum errors ( in centimeters ):

 | λ - λ' | = 0°

  ( 0°, 26° )   ( 0° , -26° )  M = +6.8 cm
 ( 90° , 26° ) ( 90° , -26° ) m = -6.8 cm

 | λ - λ' | = 120°

 ( -60°, +34° )  ( +60° , -34° )   m = -16.5 cm
 ( +30°, +34° ) ( +150° , -34° ) M = +16.5 cm

 | λ - λ' | = 160°

 ( -65°, +58° )  ( +95° , -52° )  M = +41.3 cm
 ( +10°, +62° ) ( +170° , -54° )  m = -40.6 cm

 | λ - λ' | = 168°

 ( -69°, +52° ) ( +99° , -47° )  M = +80.6 cm
  ( +6° , +5° )  ( +174° , +5° )  m = -84.3 cm


4°)  Geocentric Longitudes & Latitudes


      a)  Program(s)#1


Formula:


   Dist/(a µ) ~  1 + (f/2) ( -A + B (Sin µ)/µ )
                          + (f2/4) [ A ( -4 + µ Cot µ ) + B ( 2 (Sin µ)/µ + µ / Sin µ ) + (A2/4) ( 17 + (Sin µ) (Cos µ)/µ - 4 µ Cot µ ) - A.B ( 2 (Sin µ)/µ + µ / Sin µ ) - ( B2/2 ) (Sin µ) (Cos µ)/µ ]
                          + (f3/8) { ( 1 - A ) [ ( -A ( 1 - A ) (4/3) µ2 +  A ( 21.A - 13 )  + ( B + A Cos µ ) [ ( µ / Sin µ ) ( 6 - 13.A) + 5.B + ( µ2 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) ) ]
                                         +  ( 3.A2 - 9.B2 ) ( Sin µ ) ( Cos µ ) / µ ] + B3 [ ( Sin µ ) / µ + 2 ( Sin3 µ ) / µ ] }

               +   (f'/2) [ -A'+ B' (Sin µ)/µ ]
               +  ( f f'/4 )  (1-A) (1-A') µ2 ( -5 A B' - 5 A' B + 6 A A'  + 5 B B ' )                         f/2 ~ 1/595.543    &    f'/2 ~ 1/182233    &    a = 6378.172 km

          Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
          Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

          A  = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
          B  = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ

          A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
          B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ

Data Registers:   R00 thru R09: temp  R00 = µ  R01 = A.A'  R02 =  -B  R08 = -A'  R09 = -B'
Flags: /
Subroutines: /


 

 01 LBL "TGC"
 02 DEG
 03 STO 06
 04 RDN
 05 STO 03
 06 X<>Y
 07 1
 08 STO 04
 09 STO 12
 10 P-R
 11 STO 00
 12 STO 02
 13 R^
 14 STO 05
 15 SIN
 16 *
 17 STO 08
 18 ST+ 08
 19 X^2
 20 RCL 06
 21 RCL 04          
 22 P-R
 23 STO 01
 24 X<>Y
 25 X<> 03
 26 ST- 05
 27 SIN
 28 *
 29 ST* 08
 30 X^2
 31 +
 32 X<> 03
 33 ST* 02
 34 ST* Z
 35 X^2
 36 X<>Y
 37 X^2
 38 +
 39 X<> 05
 40 RCL Y
 41 ST+ X
 42 X<> 01
 43 P-R
 44 ST* 00
 45 R^
 46 *
 47 RCL 02          
 48 -
 49 X^2
 50 X<>Y
 51 X^2
 52 +
 53 ST/ 01
 54 ST/ 03
 55 ST/ 05
 56 ST/ 08
 57 ST+ 12
 58 ST+ 12
 59 SQRT
 60 RCL 08
 61 RCL 00
 62 R^
 63 +
 64 ST* 08
 65 STO 09
 66 RCL 03
 67 ST- 08
 68 *
 69 -
 70 X<> 09
 71 STO 03
 72 R-P
 73 X<>Y
 74 D-R
 75 STO 00
 76 R^
 77 /
 78 STO 06
 79 RCL 01          
 80 RCL 03
 81 ST* 01
 82 RCL 05
 83 ST- 01
 84 *
 85 -
 86 STO 02
 87 RCL 01
 88 ST+ 04
 89 RCL 03
 90 *
 91 +
 92 STO 05
 93 LASTX
 94 RCL 03
 95 +
 96 ST+ X
 97 +
 98 *
 99 RCL 01
100 13
101 *
102 STO T
103 -
104 6
105 -
106 *
107 RCL 02          
108 STO 11
109 5
110 *
111 +
112 RCL 05
113 *
114 +
115 RCL 01
116 X^2
117 STO 07
118 21
119 *
120 +
121 RCL 07
122 RCL 02
123 X^2
124 STO 10
125 ST* 12
126 ST+ X
127 -
128 RCL 03
129 RCL 06
130 ST/ 11
131 ST* 05
132 /
133 ST* 10
134 *
135 ST+ 07
136 RCL 10          
137 -
138 RCL 04
139 4
140 ST/ 07
141 *
142 RCL 01
143 *
144 ST+ 07
145 RCL 00
146 X^2
147 STO 03
148 *
149 3
150 ST* Z
151 /
152 +
153 +
154 595.543
155 STO 10
156 ST/ 12
157 /
158 RCL 05
159 RCL 11
160 ST* 12
161 ST+ X
162 +
163 -
164 RCL 04
165 ST* 03
166 *
167 RCL 07
168 +
169 RCL 12          
170 -
171 RCL 10
172 /
173 RCL 11
174 -
175 RCL 01
176 ST+ Y
177 RCL 02
178 -
179 RCL 08
180 ST* 01
181 RCL 09
182 -
183 *
184 5
185 *
186 RCL 01
187 +
188 RCL 08
189 RCL 03
190 ST* Y
191 +
192 *
193 RCL 10
194 ST/ Z
195 /
196 RCL 08
197 +
198 RCL 09
199 RCL 06          
200 /
201 -
202 182233
203 /
204 +
205 RCL 00
206 ST* Y
207 +
208 6378.172
209 *
210 END

 
      ( 282 bytes / SIZE 013 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( deg )                /
               Z           β ( deg )                /
               Y           λ' ( deg )                /
               X           β' ( deg )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example:    λ = -24°     ,  β  = -10°
                    λ' = +144°  ,  β' = +41°

 -24  ENTER^
 -10  ENTER^
 144  ENTER^
  41   XEQ "TGC"  >>>>  D = 16362.07202 km                                                         ---Execution time = 12s--- 


-Exact D = 16362.072084...


Notes:

-Here are a few maximum errors ( in centimeters ):

 | λ - λ' | = 120°

 ( -30°, +32° )  ( +90°, -48° )  m = -18.7 cm
 ( -45°, +62° )  ( +75° , -34° ) M = +18.1 cm

 | λ - λ' | = 140°

 ( -25°, +39° )  ( +115°, -52° ) m = -28.0 cm
 ( -55°, +60° )  ( +85° , -43° ) M = +26.9 cm

 | λ - λ' | = 160°

 ( -65°, +57° ) ( +95° , -49° )  M = +52.5 cm
 ( -20°, +42° ) ( +140° , -50° ) m = -57.5 cm

 | λ - λ' | = 168°

 ( -69°, +55° )  ( +99° , -50° )  M = +85.2 cm
 ( -9°, +38° )  ( +159° , -44° )  m = -107.5 cm


-Here is another program slightly more accurate:


Formula:


   Dist/(a µ) ~  1 + (f/2) ( -A + B (Sin µ)/µ )
                          + (f2/4) [ A ( -4 + µ Cot µ ) + B ( 2 (Sin µ)/µ + µ / Sin µ ) + (A2/4) ( 17 + (Sin µ) (Cos µ)/µ - 4 µ Cot µ ) - A.B ( 2 (Sin µ)/µ + µ / Sin µ ) - ( B2/2 ) (Sin µ) (Cos µ)/µ ]
                          + (f3/8) { ( 1 - A ) [ ( -A ( 1 - A ) (4/3) µ2 +  A ( 21.A - 13 )  + ( B + A Cos µ ) [ ( µ / Sin µ ) ( 6 - 13.A) + 5.B + ( µ2 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) ) ]
                                         +  ( 3.A2 - 9.B2 ) ( Sin µ ) ( Cos µ ) / µ ] + B3 [ ( Sin µ ) / µ + 2 ( Sin3 µ ) / µ ] }

               +   (f'/2) [ -A'+ B' (Sin µ)/µ ]
               +  ( f f'/4 )  (1-A) (1-A') µ2 [ ( - 3 A B' - 3 A' B + 4 A A'  + 3 B B ' )   + µ  ( - A B' - A' B + A A' +  B B ' ) ]        


          f/2 ~ 1/595.543    &    f'/2 ~ 1/182233    &    a = 6378.172 km

          Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
          Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

          A  = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
          B  = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ

          A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
          B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ

Data Registers:   R00 thru R11: temp  R00 = µ  R01 = A.A'  R02 =  -B  R08 = -A'  R09 = -B'
Flags: /
Subroutines: /


 

 01 LBL "TGC"
 02 DEG
 03 STO 06
 04 RDN
 05 STO 03
 06 X<>Y
 07 1
 08 STO 04
 09 STO 11
 10 P-R
 11 STO 00
 12 STO 02
 13 R^
 14 STO 05
 15 SIN
 16 *
 17 STO 08
 18 ST+ 08
 19 X^2
 20 RCL 06          
 21 RCL 04
 22 P-R
 23 STO 01
 24 X<>Y
 25 X<> 03
 26 ST- 05
 27 SIN
 28 *
 29 ST* 08
 30 X^2
 31 +
 32 X<> 03
 33 ST* 02
 34 ST* Z
 35 X^2
 36 X<>Y
 37 X^2
 38 +
 39 X<> 05
 40 RCL Y
 41 ST+ X
 42 X<> 01
 43 P-R
 44 ST* 00
 45 R^
 46 *
 47 RCL 02          
 48 -
 49 X^2
 50 X<>Y
 51 X^2
 52 +
 53 ST/ 01
 54 ST/ 03
 55 ST/ 05
 56 ST/ 08
 57 ST+ 11
 58 ST+ 11
 59 SQRT
 60 RCL 08
 61 RCL 00
 62 R^
 63 +
 64 ST* 08
 65 STO 09
 66 RCL 03
 67 ST- 08
 68 *
 69 -
 70 X<> 09
 71 STO 03
 72 R-P
 73 X<>Y
 74 D-R
 75 STO 00
 76 R^
 77 /
 78 STO 06
 79 RCL 01          
 80 RCL 03
 81 ST* 01
 82 RCL 05
 83 ST- 01
 84 *
 85 -
 86 STO 02
 87 RCL 01
 88 ST+ 04
 89 RCL 03
 90 *
 91 +
 92 STO 05
 93 LASTX
 94 RCL 03
 95 +
 96 ST+ X
 97 +
 98 *
 99 RCL 01
100 13
101 *
102 STO T
103 -
104 6
105 -
106 *
107 RCL 02        
108 5
109 *
110 +
111 RCL 05
112 *
113 +
114 RCL 01
115 X^2
116 STO 07
117 21
118 *
119 +
120 RCL 07
121 RCL 02
122 X^2
123 STO 10
124 ST* 11
125 ST+ X
126 -
127 RCL 03
128 RCL 06
129 /
130 ST* 10
131 *
132 ST+ 07
133 RCL 10
134 -
135 RCL 04
136 4
137 ST/ 07
138 *
139 RCL 01        
140 *
141 ST+ 07
142 RCL 00
143 X^2
144 STO 03
145 *
146 3
147 ST* Z
148 /
149 +
150 +
151 595.543
152 STO 10
153 ST/ 11
154 /
155 RCL 05
156 RCL 02
157 RCL 06
158 ST* Z
159 /
160 STO 05
161 ST* 11
162 ST+ X
163 +
164 -
165 RCL 04
166 ST* 03
167 *
168 RCL 07
169 +
170 RCL 11
171 -
172 RCL 10        
173 /
174 RCL 05
175 -
176 RCL 01
177 ST+ Y
178 RCL 02
179 -
180 RCL 08
181 ST* 01
182 RCL 09
183 -
184 *
185 RCL 00
186 3
187 +
188 *
189 RCL 01
190 +
191 RCL 08
192 RCL 03
193 ST* Y
194 +
195 *
196 RCL 10
197 ST/ Z
198 /
199 RCL 08
200 +
201 RCL 09
202 RCL 06        
203 /
204 -
205 182233
206 /
207 +
208 RCL 00
209 ST* Y
210 +
211 6378.172
212 *
213 END

 
      ( 284 bytes / SIZE 012 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( deg )                /
               Z           β ( deg )                /
               Y           λ' ( deg )                /
               X           β' ( deg )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example:    λ = -24°     ,  β  = -10°
                    λ' = +144°  ,  β' = +41°

 -24  ENTER^
 -10  ENTER^
 144  ENTER^
  41   XEQ "TGC"  >>>>  D = 16362.07202 km


-Exact D = 16362.072084...


Notes:

-Here are a few maximum errors ( in centimeters ):

 | λ - λ' | = 120°

 ( -30°, +32° )  ( +90°, -48° )  m = -18.6 cm
 ( -45°, +62° )  ( +75° , -34° ) M = +18.4 cm

 | λ - λ' | = 140°

 ( -25°, +40° )  ( +115°, -53° ) m = -27.0 cm
 ( -55°, +60° )  ( +85° , -43° ) M = +27.8 cm

 | λ - λ' | = 160°

 ( -65°, +57° ) ( +95° , -49° )  M = +53.9 cm
 ( -20°, +46° ) ( +140° , -53° ) m = -54.2 cm

 | λ - λ' | = 168°

 ( -69°, +55° )  ( +99° , -50° )  M = +87.0 cm
 ( -24°, +40° )  ( +144° , -45° )  m = -101.6 cm


-The maximum errors are smaller in the following programs.


      b)  Program(s)#2


Formula:


   Dist ~   a' µ { 1 + (f/2) ( -A + B (Sin µ)/µ )
               + (f2/4) [ A ( -4 + µ Cot µ ) + B ( 2 (Sin µ)/µ + µ / Sin µ ) + (A2/4) ( 17 + (Sin µ) (Cos µ)/µ - 4 µ Cot µ ) - A.B ( 2 (Sin µ)/µ + µ / Sin µ ) - ( B2/2 ) (Sin µ) (Cos µ)/µ ]
               + (f3/8)  ( 1 - A ) [ ( -A ( 1 - A ) (4/3) µ2 + ( B + A Cos µ ) ( µ2 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) )
                           +   ( 7.6 B2 + 7.6 A.B Cos µ ) + (µ/Sin µ) ( B (5.6 - 12.2 A) + A (Cos µ) (7.6-15.2 A) ) ]

               +   (f'/2) [ -A"+ B" (Sin µ)/µ ]
               +  ( f f'/4 ) µ (1-A) [ µ ( -2 AB" - 4 AA"  ) + 2 BB" ] }                         f/2 ~ 1/596.51444    &    f'/2 ~ 1/364465    &    a' = 6378.137 km

          Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
          Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

          A  = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
          B  = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ

                 -A" = 2 ( 1 - A' ) - A  
                 -B" = -2 B' - B                with:

          A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
          B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ


Data Registers:   R00 thru R09: temp  R00 = µ  R01 = -A  R02 =  -B  R08 = -A"  R09 = -B"
Flags: /
Subroutines: /


 

 01 LBL "TGC"
 02 DEG
 03 HR
 04 STO 09
 05 RDN
 06 HR
 07 STO 07
 08 X<>Y
 09 HR
 10 1
 11 STO 04
 12 P-R
 13 STO 00
 14 STO 02
 15 R^
 16 HR
 17 STO 05
 18 SIN
 19 *
 20 STO 08          
 21 ST+ 08
 22 X^2
 23 RCL 09
 24 RCL 04
 25 P-R
 26 STO 06
 27 X<>Y
 28 X<> 07
 29 ST- 05
 30 SIN
 31 *
 32 ST* 08
 33 X^2
 34 +
 35 STO 03
 36 X<>Y
 37 STO 01
 38 ST+ 01
 39 X^2
 40 RCL 07
 41 ST* 01
 42 ST* 02
 43 X^2
 44 +
 45 X<> 05
 46 RCL 06
 47 P-R
 48 ST* 00
 49 R^
 50 ST* 07
 51 *
 52 RCL 02          
 53 -
 54 X^2
 55 X<>Y
 56 X^2
 57 +
 58 ST/ 01
 59 ST/ 03
 60 ST/ 05
 61 ST/ 08
 62 SQRT
 63 RCL 08
 64 RCL 00
 65 RCL 07
 66 +
 67 STO 09
 68 ST* 08
 69 RCL 03
 70 ST- 08
 71 *
 72 -
 73 ST+ X
 74 X<> 09
 75 STO 03
 76 R-P
 77 RCL 08
 78 +
 79 ST+ X
 80 STO 08
 81 X<>Y
 82 D-R
 83 STO 00          
 84 R^
 85 /
 86 STO 06
 87 RCL 01
 88 RCL 03
 89 ST* 01
 90 RCL 05
 91 ST- 01
 92 *
 93 -
 94 STO 02
 95 ST+ 09
 96 RCL 01
 97 ST+ 04
 98 ST+ 08
 99 RCL 03
100 *
101 +
102 STO 07
103 *
104 STO 05
105 RCL 03
106 RCL 04
107 ST+ X
108 *
109 RCL 07
110 +
111 *
112 RCL 07
113 7.6
114 *
115 STO 07        
116 RCL 02
117 ST* 07
118 ST- Y
119 -
120 ST- Y
121 ST+ X
122 LASTX
123 +
124 RCL 01
125 *
126 -
127 *
128 ST+ 07
129 RCL 01
130 4
131 *
132 RCL 00
133 X^2
134 RCL 04
135 3
136 /
137 *
138 *
139 RCL 07
140 +
141 596.51444
142 STO 07        
143 /
144 +
145 RCL 05
146 RCL 02
147 RCL 06
148 ST/ 03
149 /
150 STO 05
151 ST+ X
152 +
153 -
154 RCL 04
155 *
156 RCL 01
157 ST- 05
158 X^2
159 RCL X
160 RCL 02
161 X^2
162 ST+ X
163 -
164 RCL 03
165 *
166 +
167 4
168 /
169 +
170 RCL 07
171 /
172 RCL 05
173 -
174 RCL 02
175 RCL 08        
176 ST+ X
177 RCL 09
178 ST* Z
179 +
180 RCL 01
181 *
182 RCL 00
183 ST* 04
184 *
185 -
186 ST+ X
187 RCL 04
188 *
189 RCL 07
190 ST/ Z
191 /
192 RCL 08
193 +
194 RCL 09
195 RCL 06
196 /
197 -
198 364465
199 /
200 +
201 RCL 00        
202 ST* Y
203 +
204 6378.137
205 *
206 END

 
      ( 277 bytes / SIZE 010 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example1:    λ = +166°08'02"2  ,  β  = -33°41'00"9
                     λ' = -101°56'06"0  ,  β' = +33°10'47"0
 

     166.08022   ENTER^
    -33.41009     ENTER^
   -101.56060    ENTER^
     33.10470     XEQ "TGC"   >>>>   D = 12138.70252 km                                                      ---Execution time = 11.9s--- 

-Exact D = 12138.702497....    ( with free42,  TGC gives 12138.702511... )

Example2:    λ = -16°     ,  β  = -16°
                     λ' = +157°  ,  β' = +13°
 

     -16   ENTER^  ENTER^
     157  ENTER^
      13      R/S   >>>>   D = 19205.13660 km            

-Exact D = 19205.13653....
-In this example, the great elliptic arc length = 19205.463988...


Notes:

-If   | λ - λ' | = 160° ,  the maximum  relative error is about  2.28  10-8  and the root-mean-square relative error is ~ 0.63 10-8
-If   | λ - λ' | = 120° ,  the root-mean-square relative error is ~ 0.47 10-8

-Here are a few maximum errors ( in centimeters ):

 | λ - λ' | = 0°

  ( 0° , 51° )  ( 0° , -51° )  m = -11.5 cm
 ( 90° , 90° ) ( 90° , 43° ) M = +4.3 cm

 | λ - λ' | = 120°

 ( +15°, +69° ) ( +135° , -46° )  m = -15.7 cm
 ( +0°, +30° )   ( +120° , -9° )  M = +19.2 cm

 | λ - λ' | = 160°

 ( -65°, +67° ) ( +95° , -62° )  M = +43.2 cm
  ( 10°, +53° ) ( +170° , -61° )  m = -41.6 cm

 | λ - λ' | = 168°

 ( -69°, +61° ) ( +99° , -57° )  M = +83.1 cm
 ( -9° , +45° ) ( +159° , -50° )  m = -80.1 cm


Remarks:

-If we replace lines 201 to 206 with:

    RCL 00   ST* Y   ST* Z   ST+ Z   +   6378.137   ST* Z   *   END

 Y-output = Geodesic distance on the ellipsoid of revolution ( WGS84 )

-For instance:

     166.08022   ENTER^
    -33.41009     ENTER^
   -101.56060    ENTER^
     33.10470     XEQ "TGC"   >>>>   D = 12138.70252 km                               
                                              X<>Y    d = 12138.68509 km ( WGS84 )

  ( cf "Terrestrial Geodesic Distance(3)"  paragraph 1°)d) )


-With the ellipsoid model of the Earth,  f.f'/4 ~ f3/8 , so we can save 10 bytes and ~ 0.4 second with the following program


Data Registers:   R00 thru R09: temp  R00 = µ  R01 = -A  R02 = -B  R08 = -A"  R09 = -B" (Sin µ)/µ  
Flags: /
Subroutines: /


 

 01 LBL "TGC"
 02 DEG
 03 HR
 04 STO 09
 05 RDN
 06 HR
 07 STO 07
 08 X<>Y
 09 HR
 10 1
 11 STO 04
 12 P-R
 13 STO 00
 14 STO 02
 15 R^
 16 HR
 17 STO 05
 18 SIN
 19 *
 20 STO 08          
 21 ST+ 08
 22 X^2
 23 RCL 09
 24 RCL 04
 25 P-R
 26 STO 06
 27 X<>Y
 28 X<> 07
 29 ST- 05
 30 SIN
 31 *
 32 ST* 08
 33 X^2
 34 +
 35 STO 03
 36 X<>Y
 37 STO 01
 38 ST+ 01
 39 X^2
 40 RCL 07
 41 ST* 01
 42 ST* 02
 43 X^2
 44 +
 45 X<> 05
 46 RCL 06          
 47 P-R
 48 ST* 00
 49 R^
 50 ST* 07
 51 *
 52 RCL 02
 53 -
 54 X^2
 55 X<>Y
 56 X^2
 57 +
 58 ST/ 01
 59 ST/ 03
 60 ST/ 05
 61 ST/ 08
 62 SQRT
 63 RCL 08
 64 RCL 00
 65 RCL 07
 66 +
 67 STO 09
 68 ST* 08
 69 RCL 03
 70 ST- 08
 71 *
 72 -
 73 ST+ X
 74 X<> 09
 75 STO 03          
 76 R-P
 77 RCL 08
 78 +
 79 ST+ X
 80 STO 08
 81 X<>Y
 82 D-R
 83 STO 00
 84 R^
 85 /
 86 STO 06
 87 RCL 01
 88 RCL 03
 89 ST* 01
 90 RCL 05
 91 ST- 01
 92 *
 93 -
 94 STO 02
 95 ST+ 09
 96 RCL 01
 97 ST+ 04
 98 ST+ 08
 99 RCL 03
100 *
101 +
102 STO 07        
103 *
104 STO 05
105 RCL 03
106 RCL 04
107 ST+ X
108 *
109 RCL 07
110 +
111 *
112 RCL 07
113 7.6
114 *
115 STO 07
116 RCL 02
117 ST* 07
118 ST- Y
119 -
120 ST- Y
121 ST+ X
122 LASTX
123 +
124 RCL 01
125 *
126 -
127 *
128 RCL 07        
129 +
130 RCL 02
131 RCL 04
132 3
133 /
134 RCL 08
135 -
136 ST+ X
137 RCL 09
138 ST* Z
139 -
140 RCL 00
141 *
142 RCL 01
143 *
144 +
145 ST+ X
146 RCL 00
147 *
148 +
149 596.51444
150 STO 07
151 /
152 RCL 05
153 RCL 02
154 RCL 06
155 ST/ 03
156 ST/ 09
157 /
158 STO 05
159 ST+ X
160 +
161 -
162 RCL 04        
163 *
164 RCL 01
165 ST* 04
166 ST- 05
167 X^2
168 RCL X
169 RCL 02
170 X^2
171 ST+ X
172 -
173 RCL 03
174 *
175 +
176 RCL 04
177 4
178 ST/ Z
179 *
180 +
181 +
182 RCL 07
183 /
184 RCL 05
185 -
186 RCL 08
187 RCL 09
188 -
189 611
190 /
191 +
192 RCL 07        
193 /
194 RCL 00
195 ST* Y
196 +
197 6378.137
198 *
199 END

 
      ( 267 bytes / SIZE 010 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example:    λ = +166°08'02"2  ,  β  = -33°41'00"9
                    λ' = -101°56'06"0  ,  β' = +33°10'47"0
 

     166.08022   ENTER^
    -33.41009     ENTER^
   -101.56060    ENTER^
     33.10470     XEQ "TGC"   >>>>   D = 12138.70252 km                                                      ---Execution time = 11.5s--- 

-Exact D = 12138.702497....


      c)  Program#3


Formula:


   Dist ~   a' µ { 1 + (f/2) ( -A + B (Sin µ)/µ )
               + (f2/4) [ A ( -4 + µ Cot µ ) + B ( 2 (Sin µ)/µ + µ / Sin µ ) + (A2/4) ( 17 + (Sin µ) (Cos µ)/µ - 4 µ Cot µ ) - A.B ( 2 (Sin µ)/µ + µ / Sin µ ) - ( B2/2 ) (Sin µ) (Cos µ)/µ ]
               + (f3/8)  ( 1 - A ) [ ( -A ( 1 - A ) (4/3) µ2 + A ( 24 A - 12 ) + ( B + A Cos µ ) [ 8 B + ( µ / Sin µ ) ( 6 - 12 A ) + ( µ2 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) ) ] ]

               +   (f'/2) [ -A"+ B" (Sin µ)/µ ]
               +  ( f f'/4 ) µ (1-A) [ µ ( -2.AB" - 4 AA"  ) + 2 BB" ] }                         f/2 ~ 1/596.51444    &    f'/2 ~ 1/364465    &    a' = 6378.137 km

          Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
          Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

          A  = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
          B  = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ

                 -A" = 2 ( 1 - A' ) - A  
                 -B" = -2 B' - B                with:

          A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
          B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ


Data Registers:   R00 thru R09: temp  R00 = µ  R01 = -A  R02 =  -B  R08 = -A"  R09 = -B"
Flags: /
Subroutines: /


 

 01 LBL "TGC"
 02 DEG
 03 HR
 04 STO 06
 05 RDN
 06 HR
 07 STO 09
 08 X<>Y
 09 HR
 10 1
 11 STO 04
 12 P-R
 13 STO 00
 14 STO 02
 15 R^
 16 HR
 17 STO 05
 18 SIN
 19 *
 20 STO 08
 21 ST+ 08
 22 X^2
 23 RCL 06
 24 RCL 04          
 25 P-R
 26 STO 06
 27 X<>Y
 28 X<> 09
 29 ST- 05
 30 SIN
 31 *
 32 ST* 08
 33 X^2
 34 +
 35 STO 03
 36 X<>Y
 37 STO 01
 38 ST+ 01
 39 X^2
 40 RCL 09
 41 ST* 01
 42 ST* 02
 43 X^2
 44 +
 45 X<> 05
 46 RCL 06
 47 P-R
 48 ST* 00
 49 R^
 50 ST* 09
 51 *
 52 RCL 02          
 53 -
 54 X^2
 55 X<>Y
 56 X^2
 57 +
 58 ST/ 01
 59 ST/ 03
 60 ST/ 05
 61 ST/ 08
 62 SQRT
 63 RCL 08
 64 RCL 00
 65 RCL 09
 66 +
 67 ST* 08
 68 STO 09
 69 RCL 03
 70 ST- 08
 71 *
 72 -
 73 ST+ X
 74 X<> 09
 75 STO 03
 76 R-P
 77 RCL 08
 78 +
 79 ST+ X
 80 STO 08
 81 X<>Y
 82 D-R
 83 STO 00          
 84 R^
 85 /
 86 STO 06
 87 RCL 01
 88 RCL 03
 89 ST* 01
 90 RCL 05
 91 ST- 01
 92 *
 93 -
 94 STO 02
 95 ST+ 09
 96 RCL 01
 97 ST+ 04
 98 ST+ 08
 99 RCL 03
100 *
101 +
102 STO 05
103 LASTX
104 RCL 03
105 +
106 ST+ X
107 +
108 *
109 RCL 01        
110 ST+ X
111 STO 07
112 6
113 ST* Y
114 +
115 ST* 07
116 -
117 *
118 RCL 02
119 8
120 *
121 +
122 RCL 05
123 *
124 ST+ 07
125 RCL 01
126 4
127 *
128 RCL 00
129 X^2
130 RCL 04
131 3
132 /
133 *
134 *
135 RCL 07
136 +
137 596.51444
138 STO 07        
139 /
140 +
141 RCL 05
142 RCL 02
143 RCL 06
144 ST* Z
145 ST/ 03
146 /
147 STO 05
148 ST+ X
149 +
150 -
151 RCL 04
152 *
153 RCL 01
154 ST- 05
155 X^2
156 RCL X
157 RCL 02
158 X^2
159 ST+ X
160 -
161 RCL 03
162 *
163 +
164 4
165 /
166 +
167 RCL 07        
168 /
169 RCL 05
170 -
171 RCL 02
172 RCL 08
173 ST+ X
174 RCL 09
175 ST* Z
176 +
177 RCL 01
178 *
179 RCL 00
180 ST* 04
181 *
182 -
183 ST+ X
184 RCL 04
185 *
186 RCL 07
187 ST/ Z
188 /
189 RCL 08
190 +
191 RCL 09
192 RCL 06
193 /
194 -
195 364465
196 /
197 +
198 RCL 00        
199 ST* Y
200 +
201 6378.137
202 *
203 END

 
      ( 272 bytes / SIZE 010 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example:    λ = +166°08'02"2  ,  β  = -33°41'00"9
                      λ' = -101°56'06"0  ,  β' = +33°10'47"0
 

     166.08022   ENTER^
    -33.41009     ENTER^
   -101.56060    ENTER^
     33.10470     XEQ "TGC"   >>>>   D = 12138.70252 km                                                      ---Execution time = 11.8s--- 

-Exact D = 12138.702497....  


Notes:

-If   | λ - λ' | = 160° ,  the maximum  relative error is about  2.27  10-8  and the root-mean-square relative error is ~ 0.63 10-8
-If   | λ - λ' | = 120° ,  the root-mean-square relative error is ~ 0.46 10-8

-Here are a few maximum errors ( in centimeters ):

 | λ - λ' | = 0°

  ( 0° , 51° )  ( 0° , -51° )  m = -11.5 cm
 ( 90° , 90° ) ( 90° , 43° ) M = +4.3 cm

 | λ - λ' | = 120°

 ( -45°, +19° )   ( +75° , -30° )   m = -11.9 cm
 ( +15°, +36° )  ( +135° , -25° )  M = +15.3 cm

 | λ - λ' | = 160°

 ( -65°, +62° )  ( +95° , -56° )  M = +42.2 cm  
 ( +10°, +63° ) ( +170° , -55° ) m = -41.4 cm

 | λ - λ' | = 168°

 ( +6°, +55° )  ( +174°, -49° )  m = -82.2 cm
 ( -69°, +58° ) ( +99° , -54° )  M = +76.9 cm


      d)  Program#4


Formula:


   Dist/(a' µ) ~  1 + (f/2) ( -A + B (Sin µ)/µ )
                          + (f2/4) [ A ( -4 + µ Cot µ ) + B ( 2 (Sin µ)/µ + µ / Sin µ ) + (A2/4) ( 17 + (Sin µ) (Cos µ)/µ - 4 µ Cot µ ) - A.B ( 2 (Sin µ)/µ + µ / Sin µ ) - ( B2/2 ) (Sin µ) (Cos µ)/µ ]
                          + (f3/8) { ( 1 - A ) [ ( -A ( 1 - A ) (4/3) µ2 +  A ( 21.A - 13 )  + ( B + A Cos µ ) [ ( µ / Sin µ ) ( 6 - 13.A) + 5.B + ( µ2 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) ) ]
                                         +  ( 3.A2 - 9.B2 ) ( Sin µ ) ( Cos µ ) / µ ] + B3 [ ( Sin µ ) / µ + 2 ( Sin3 µ ) / µ ] }

               +   (f'/2) [ -A"+ B" (Sin µ)/µ ]
               +  ( f f'/4 )  (1-A) [ µ2 ( -2 AB" - 4 AA"  ) + 5 BB" ]                         f/2 ~ 1/596.51444    &    f'/2 ~ 1/364465    &    a' = 6378.137 km

          Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
          Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

          A  = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
          B  = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ

                 -A" = 2 ( 1 - A' ) - A  
                 -B" = -2 B' - B                with:

          A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
          B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ


Data Registers:   R00 thru R12: temp   R00 = µ  R01 = -A + B ( Sin µ ) / µ   R02 = - B ( Sin µ ) / µ  R08 = -A"  R09 = -B"   R12 = 5.B.B" ( 1 - A )
Flags: /
Subroutines: /


 

 01 LBL "TGC"
 02 DEG
 03 HR
 04 STO 06
 05 RDN
 06 HR
 07 STO 09
 08 X<>Y
 09 HR
 10 1
 11 STO 04
 12 P-R
 13 STO 00
 14 STO 02
 15 R^
 16 HR
 17 STO 05
 18 SIN
 19 *
 20 STO 08
 21 ST+ 08
 22 X^2
 23 RCL 06
 24 RCL 04          
 25 P-R
 26 STO 06
 27 X<>Y
 28 X<> 09
 29 ST- 05
 30 SIN
 31 *
 32 ST* 08
 33 X^2
 34 +
 35 STO 03
 36 X<>Y
 37 STO 01
 38 ST+ 01
 39 X^2
 40 RCL 09
 41 ST* 01
 42 ST* 02
 43 X^2
 44 +
 45 X<> 05
 46 RCL 06
 47 P-R
 48 ST* 00
 49 R^
 50 ST* 09
 51 *
 52 RCL 02          
 53 -
 54 X^2
 55 X<>Y
 56 X^2
 57 +
 58 ST/ 01
 59 ST/ 03
 60 ST/ 05
 61 ST/ 08
 62 STO 10
 63 ST+ 10
 64 SQRT
 65 RCL 08
 66 RCL 00
 67 RCL 09
 68 +
 69 ST* 08
 70 STO 09
 71 RCL 03
 72 ST- 08
 73 *
 74 -
 75 ST+ X
 76 X<> 09
 77 STO 03
 78 R-P
 79 RCL 08
 80 +
 81 ST+ X
 82 STO 08          
 83 X<>Y
 84 D-R
 85 STO 00
 86 R^
 87 /
 88 STO 06
 89 RCL 01
 90 RCL 03
 91 ST* 01
 92 RCL 05
 93 ST- 01
 94 *
 95 -
 96 STO 02
 97 ST+ 09
 98 RCL 01
 99 ST+ 04
100 ST+ 08
101 RCL 03
102 *
103 +
104 STO 05
105 LASTX
106 RCL 03
107 +
108 ST+ X
109 +
110 *
111 RCL 01        
112 13
113 *
114 STO T
115 -
116 6
117 -
118 *
119 RCL 02
120 5
121 *
122 STO 12
123 +
124 RCL 05
125 *
126 +
127 RCL 01
128 X^2
129 STO 07
130 21
131 *
132 +
133 RCL 07
134 RCL 02
135 X^2
136 ST* 10
137 ST+ 10
138 STO 11
139 ST+ X
140 -
141 RCL 03
142 RCL 06
143 ST/ 02
144 ST* 05
145 /
146 ST* 11
147 *
148 ST+ 07
149 RCL 11
150 -
151 RCL 01        
152 RCL 04
153 ST* 12
154 *
155 4
156 ST/ 07
157 *
158 ST+ 07
159 RCL 00
160 X^2
161 *
162 STO 11
163 3
164 ST* Z
165 /
166 596.51444
167 1/X
168 ST* 10
169 RDN
170 +
171 +
172 *
173 RCL 05
174 RCL 02
175 ST- 01
176 ST* 10
177 ST+ X
178 +
179 -
180 RCL 04        
181 *
182 RCL 10
183 -
184 RCL 07
185 +
186 *
187 RCL 01
188 +
189 *
190 RCL 09
191 ST* 12
192 2
193 /
194 RCL 08
195 +
196 RCL 11
197 *
198 RCL 12
199 -
200 R^
201 *
202 RCL 08
203 -
204 RCL 09
205 RCL 06
206 /
207 +
208 364465
209 /
210 -
211 RCL 00        
212 ST* Y
213 +
214 6378.137
215 *
216 END

 
      ( 290 bytes / SIZE 013 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example1:    λ = +166°08'02"2  ,  β  = -33°41'00"9
                      λ' = -101°56'06"0  ,  β' = +33°10'47"0
 

     166.08022   ENTER^
    -33.41009     ENTER^
   -101.56060    ENTER^
     33.10470     XEQ "TGC"   >>>>   D = 12138.70249 km                                                      ---Execution time = 12.4s--- 

-Exact D = 12138.702497....

Example2:    λ = 0°        ,  β  = -16°
                     λ' = +177°  ,  β' = +10°

       0    ENTER^
     -16   ENTER^
     177  ENTER^
      10      R/S   >>>>   D = 19266.90923 km            

-Exact D = 19266.909329....
-In this example, the great elliptic arc length = 19267.285727...
 

Remark:

-If we replace lines 211 to 216 with:

    RCL 00   ST* Y   ST* Z   ST+ Z   +   6378.137   ST* Z   *   END

 Y-output = Geodesic distance on the ellipsoid of revolution ( WGS84 )

-For instance:

     166.08022   ENTER^
    -33.41009     ENTER^
   -101.56060    ENTER^
     33.10470     XEQ "TGC"   >>>>   D = 12138.70249 km                               
                                              X<>Y    d = 12138.68505 km ( WGS84 )


Notes:

-If   | λ - λ' | = 160° ,  the maximum  relative error is about  2.24 10-8

-If   | λ - λ' | =  80° ,   the root-mean-square relative error is ~ 0.32 10-8
-If   | λ - λ' | = 120° ,  the root-mean-square relative error is ~ 0.37 10-8
-If   | λ - λ' | = 140° ,  the root-mean-square relative error is ~ 0.47 10-8
-If   | λ - λ' | = 150° ,  the root-mean-square relative error is ~ 0.52 10-8
-If   | λ - λ' | = 160° ,  the root-mean-square relative error is ~ 0.60 10-8
-If   | λ - λ' | = 168° ,  the root-mean-square relative error is ~ 0.82 10-8
-If   | λ - λ' | = 170° ,  the root-mean-square relative error is ~ 0.96 10-8

-Here are a few maximum errors ( in centimeters ):

 | λ - λ' | = 0°

  ( 0° , 50° )  ( 0° , -90° )  m = -7.5 cm
 ( 90° , 79° ) ( 90° , 42° ) M = +3.7 cm

 | λ - λ' | = 120°

 ( -45°, +20° )  ( +75° , -31° )    m = -13.4 cm
 ( +30°, +21° ) ( +150° , +20° ) M = +11.5 cm

 | λ - λ' | = 140°

 ( -55°, +25° )  ( +85° , -32° )    m = -21.3 cm
 ( +20°, +17° ) ( +160° , +17° ) M = +19.6 cm

 | λ - λ' | = 150°

 ( -60°, +28° )  ( +90° , -32° )    m = -26.3 cm
 (   0°, +32° )   ( +150° , -27° ) M = +24.8 cm

 | λ - λ' | = 160°

 ( -80°, +62° )  ( +80° , -54° )  M = +40.5 cm
 ( 10°, +55° ) ( +170° , -63° )   m = -41.5 cm

 | λ - λ' | = 168°

 ( -69°, +58° ) ( +99° , -54° )  M = +77.5 cm
 (  6° , +59° ) ( +174° , -54° )  m = -77.9 cm

 | λ - λ' | = 170°

 ( -70° , +54° ) ( +100° , -50° )  M = +96.5 cm
 ( -10° , +50° ) ( +160° , -54° )  m = -98.6 cm


      e)  Program#5  ( With Great Elliptic Arc Length )


-In most cases, the following program is even more accurate !
-This method is not completely a generalization of Andoyer's formula:

-It first uses the formula listed in "Great Elliptic Arc Length for the HP41"  paragraph 2°)b):


               m = [ y2 (a2/b2 - 1)/2 + z2 (a2/c2 - 1)/2 ] / ( Sin2 µ )
    With    n  = [ y'2 (a2/b2 - 1)/2 + z'2 (a2/c2 - 1)/2 ] / ( Sin2 µ )      
               p  = 2 [ y.y' (a2/b2 - 1)/2 + z.z' (a2/c2 - 1)/2 ] / ( Sin2 µ )

 R/a = 1 / SQRT [ 1 + m Sin2 (µ-t) + n Sin2 t + p Sin t Sin (µ-t) ]  = 1 / SQRT ( 1 + q )     where q is a small number

-After some calculations, it yields:  

     1 + q = ( 1 + m Sin2 µ ) [ 1 + e Sin2 t + g Sin t Cos t ]  =  ( 1 + m Sin2 µ ) ( 1 + e/2 )  [ 1 + E Cos 2.t + F Sin 2.t ] =  ( 1 + m Sin2 µ ) ( 1 + e/2 ) [ 1 + G Sin ( 2.t + D ) ]

              = ( 1 + m Sin2 µ ) ( 1 + e/2 ) ( 1 + h )


-The formula of order 3 to compute the arc length  =  §0µ [ R2 + ( dR/dt )2 ] 1/2 dt  is

    [ R2 + ( dR/dt )2 ] 1/2  ~   a  ( 1 + m Sin2 µ ) -1/2 (1 + e/2 )-1/2 [ 1 - h/2 + (3/8) h2 - (5/16) h3 + (1/8) h'2 - (5/16) h h'2 ]             where  h' = dh/dt

-And the great elliptic arc length is:

      Δ / a   =   ( 1 + m Sin2 µ )-1/2 ( 1 + e/2 )-1/2 {  µ + ( G / 4 )    [ - Cos D + Cos ( 2.µ + D ) ]  + ( G2 / 32 ) [ 14 µ - ( Sin D ) ( Cos D ) + Sin ( 2.µ + D ) Cos ( 2.µ + D ) ]
                                                                                   + ( G3 / 32 ) [ -5 Cos D + 5 Cos ( 2.µ + D ) - 5 Cos3 D + 5 Cos3 ( 2.µ + D ) ] }



-Then, the difference between geodesic distance & great elliptic arc lentgh is given in "Terrestrial Geodesic Distance(3)"

  (d - Δ) / ( a'  µ ( 1 - A ) ) =  (f2/4) [ ( µ / Sin µ ) ( B + A Cos µ ) - A - B ( Sin µ ) / µ ]
                                           + (f3/8) { ( µ / Sin µ ) ( B + A Cos µ ) [ 6 - 13 A + ( µ / ( Sin µ ) ) ( B + ( 3 A - 2 ) Cos µ ) ]
                                                        + B2 ( 5 - 6 ( Sin µ  Cos µ ) / µ )  + B [ ( 4 A - 4 ) ( Sin µ ) / µ + 5 A Cos µ ]
                                                        + A [ 3 A ( Sin µ  Cos µ ) / µ + 7 A - 4 + 4 ( A - 1 ) µ2 / 3 ] }


    with   a' = (a+b)/2 + (a-b)/2  Cos (λ+λ')

-The angular separation µ is computed with Sin µ & Cos µ


Data Registers:   R00 thru R16: temp
Flags: /
Subroutines: /


 

 01 LBL "TGC"
 02 DEG
 03 HR
 04 STO 02
 05 RDN
 06 HR
 07 STO 06
 08 STO 15
 09 X<> Z
 10 HR
 11 ST+ 15
 12 X<>Y
 13 HR
 14 1
 15 STO 07
 16 P-R
 17 X<>Y
 18 STO 14
 19 RDN
 20 P-R
 21 STO 11
 22 X<>Y
 23 STO 13
 24 RCL 06
 25 RCL 02
 26 RCL 07
 27 P-R
 28 X<>Y
 29 STO 12
 30 RDN
 31 P-R
 32 STO 09
 33 RCL 11
 34 *
 35 X<>Y
 36 STO 10
 37 RCL 13
 38 *
 39 STO 05
 40 +
 41 RCL 12          
 42 RCL 14
 43 *
 44 STO 00
 45 +
 46 STO 04
 47 RCL 10
 48 X^2
 49 2195 E-8
 50 STO 02
 51 ST* 05
 52 *
 53 6750546 E-9
 54 STO 03
 55 ST* 00
 56 RCL 12
 57 X^2
 58 *
 59 +
 60 STO 01
 61 RCL 13
 62 X^2
 63 RCL 02
 64 *
 65 RCL 14
 66 X^2
 67 RCL 03
 68 *
 69 +
 70 STO 06
 71 RCL 10
 72 RCL 11
 73 *
 74 RCL 09
 75 RCL 13
 76 *
 77 -
 78 X^2
 79 RCL 12
 80 RCL 13
 81 *
 82 RCL 10
 83 RCL 14
 84 *
 85 -
 86 X^2
 87 +
 88 RCL 11          
 89 RCL 12
 90 *
 91 RCL 09
 92 RCL 14
 93 *
 94 -
 95 X^2
 96 +
 97 STO 09
 98 SQRT
 99 STO 11
100 ST/ 12
101 ST/ 14
102 RCL 04
103 R-P
104 X<>Y
105 STO 08
106 RCL 00
107 RCL 05
108 +
109 ST+ X
110 RCL 09
111 ST/ 01
112 ST/ 06
113 /
114 STO 02
115 RCL 04
116 *
117 RCL 01
118 -
119 RCL 08
120 ST+ X
121 STO 05
122 COS
123 RCL 06
124 *
125 -
126 RCL 02
127 RCL 04
128 ST+ X
129 RCL 06
130 *
131 -
132 RCL 06
133 RCL 11        
134 ST* Z
135 X^2
136 *
137 RCL 07
138 +
139 STO 03
140 ST+ X
141 ST/ Z
142 /
143 RCL 07
144 RCL Z
145 -
146 ST* 03
147 ST/ Z
148 /
149 R-P
150 STO 01
151 X<>Y
152 STO 02
153 RCL 07
154 P-R
155 STO 00
156 X<>Y
157 STO 06
158 RCL 02
159 RCL 05
160 +
161 RCL 07
162 P-R
163 STO 10
164 ST* Y
165 X^2
166 LASTX
167 ST* Y
168 +
169 RCL 00
170 ST* 06
171 ST- 10
172 X^2
173 LASTX
174 ST* Y
175 +
176 -
177 RCL 01        
178 STO T
179 *
180 5
181 *
182 +
183 RCL 06
184 -
185 RCL 08
186 D-R
187 STO 00
188 14
189 *
190 +
191 *
192 8
193 /
194 RCL 10
195 +
196 *
197 4
198 /
199 RCL 00
200 +
201 RCL 03
202 SQRT
203 /
204 6378.172
205 STO 16
206 *
207 STO 10
208 RCL 12
209 X^2
210 RCL 14
211 ST* 12
212 X^2
213 +
214 STO 05
215 RCL 04
216 ST* 05
217 STO 08
218 STO 13
219 RCL 12        
220 ST+ X
221 ST- 05
222 *
223 -
224 ST- 07
225 ST* 13
226 STO 14
227 RCL 00
228 RCL 11
229 /
230 STO 06
231 ST/ 08
232 STO 12
233 RCL 05
234 RCL 13
235 +
236 ST* 12
237 RCL 04
238 RCL 07
239 ST+ X
240 *
241 -
242 *
243 RCL 14
244 13
245 *
246 -
247 6
248 +
249 RCL 12
250 *
251 5
252 ST* 13
253 RCL 08
254 6
255 *
256 -
257 RCL 05
258 *
259 RCL 07
260 4
261 *
262 RCL 06
263 /
264 -
265 RCL 13        
266 +
267 RCL 05
268 *
269 +
270 RCL 00
271 ST+ X
272 X^2
273 RCL 07
274 ST* 00
275 *
276 3
277 ST* 08
278 /
279 RCL 08
280 7
281 +
282 RCL 14
283 *
284 -
285 4
286 +
287 RCL 14
288 ST- 12
289 *
290 -
291 RCL 15
292 COS
293 .035
294 ST- 16
295 *
296 RCL 16
297 +
298 STO 01
299 6356.752314
300 -
301 RCL 01
302 ST* 00
303 ST+ X
304 /
305 STO Z
306 *
307 RCL 05        
308 RCL 06
309 /
310 -
311 RCL 12
312 +
313 *
314 *
315 RCL 00
316 *
317 RCL 10
318 +
319 END

 
      ( 407 bytes / SIZE 017 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
               L
               /
          d ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid & d =R10 = great elliptic arc length

Example:    λ = +166°08'02"2  ,  β  = -33°41'00"9
                     λ' = -101°56'06"0  ,  β' = +33°10'47"0
 

     166.08022   ENTER^
    -33.41009     ENTER^
   -101.56060    ENTER^
     33.10470     XEQ "TGC"   >>>>   D = 12138.70250 km                                                      ---Execution time = 18.7s---
                                LASTX = R10 = d  = 12138.70371 km

-Exact D = 12138.702497....


  Notes:

-With free42 , replace line 49 by  2195022 E-11  and line 53 by  675054581 E-11  ( exact values are:  a2/b2-1  &  a2/c2-1 )

-With the great elliptic arc length, maximum error is about 1 millimeter
-But with the geodesic distance - except if  λ - λ' = 0 - errors may be much larger:

-If   | λ - λ' | = 160° ,  the maximum  relative error is about  2.31  10-8  and the root-mean-square relative error is ~ 0.53 10-8
-If   | λ - λ' | = 120° ,  the root-mean-square relative error is ~ 0.22 10-8

-Here are a few maximum errors ( in centimeters ):

 | λ - λ' | = 0°

  maximum error ~ 1 mm

 | λ - λ' | = 120°

   ( 0°, +43° ) ( +120° , -60° ) m = -10.4 cm
 ( -30°, +68° ) ( +90° , -51° ) M = +10.4 cm

 | λ - λ' | = 160°

 ( -65°, +58° ) ( +95° , -50° )  M = +42.4 cm
 ( -5°, +51° ) ( +155° , -58° )  m = -42.8 cm

 | λ - λ' | = 168°

 ( -69°, +54° ) ( +99° , -49° )  M = +75.1 cm
 ( -9° , +54° ) ( +159° , -58° )  m = -76.7 cm


      f)  My favorite Programs


        f1)  Program#1


Formula:


   Dist/(a' µ) ~  1 + (f/2) ( -A + B (Sin µ)/µ )
                          + (f2/4) [ A ( -4 + µ Cot µ ) + B ( 2 (Sin µ)/µ + µ / Sin µ ) + (A2/4) ( 17 + (Sin µ) (Cos µ)/µ - 4 µ Cot µ ) - A.B ( 2 (Sin µ)/µ + µ / Sin µ ) - ( B2/2 ) (Sin µ) (Cos µ)/µ ]
                          + (f3/8) { ( 1 - A ) [ ( -A ( 1 - A ) (4/3) µ2 +  A ( 21.A - 13 )  + ( B + A Cos µ ) [ ( µ / Sin µ ) ( 6 - 13.A) + 5.B + ( µ2 / Sin2 µ ) ( B + ( 3 A - 2 ) Cos µ ) ) ]
                                   +  ( 3.A2 - 9.B2 ) ( Sin µ ) ( Cos µ ) / µ ] + B3 [ ( Sin µ ) / µ + 2 ( Sin3 µ ) / µ ] }
                          + (f4/16) ( 1 - A ) ( µ3 / Sin3 µ ) ( B + A Cos µ ) [ 2.B + ( 4.A - 2 ) Cos µ ]

               +   (f'/2) [ -A"+ B" (Sin µ)/µ ]
               +  ( f f'/4 )  (1-A) [ µ2 ( -2 AB" - 4 AA"  ) + 5 BB" ] 
               +  ( f 2 f'/8 )  (1-A) ( µ2 / Sin2 µ ) ( A2 + B2 ) ( -28.A" - 24.B" )                               f/2 ~ 1/596.51444    &    f'/2 ~ 1/364465    &    a' = 6378.137 km

          Sin2 µ = Sin2 ( λ - λ' ) Cos2 β' + [ Cos β Sin β' - Cos β' Sin β Cos ( λ - λ' ) ]2
          Cos µ = Sin β Sin β' + Cos β Cos β' Cos ( λ - λ' )

          A  = [ Sin2 β + Sin2 β' - 2 Sin β Sin β' Cos µ ] / Sin2 µ              
          B  = [ ( Sin2 β + Sin2 β' ) Cos µ - 2 Sin β Sin β' ] / Sin2 µ

                 -A" = 2 ( 1 - A' ) - A  
                 -B" = -2 B' - B                with:

          A' = ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' - 2  cos β  Sin λ cos β'  Sin λ' Cos µ ) / Sin2 µ
          B' = [ ( cos2 β  Sin2 λ  + cos2 β'  Sin2 λ' ) Cos  µ  - 2 cos β  Sin λ cos β'  Sin λ' ] / Sin2 µ


Data Registers:   R00 thru R14: temp   R00 = µ  R01 = -A + B ( Sin µ ) / µ   R02 = - B ( Sin µ ) / µ  R08 = -A"  R09 = -B" ( Sin µ ) / µ   R12 = 5.B.B" ( 1 - A )
Flags: /
Subroutines: /


 

 01 LBL "TGC"
 02 DEG
 03 HR
 04 STO 06
 05 RDN
 06 HR
 07 STO 03
 08 X<>Y
 09 HR
 10 1
 11 STO 04
 12 P-R
 13 STO 00
 14 STO 02
 15 R^
 16 HR
 17 STO 05
 18 SIN
 19 *
 20 STO 08
 21 ST+ 08
 22 X^2
 23 RCL 06
 24 RCL 04          
 25 P-R
 26 STO 01
 27 X<>Y
 28 X<> 03
 29 ST- 05
 30 SIN
 31 *
 32 ST* 08
 33 X^2
 34 +
 35 X<> 03
 36 ST* 02
 37 ST* Z
 38 X^2
 39 X<>Y
 40 X^2
 41 +
 42 X<> 05
 43 RCL Y
 44 ST+ X
 45 X<> 01
 46 P-R
 47 ST* 00
 48 R^
 49 *
 50 RCL 02
 51 -
 52 X^2
 53 X<>Y
 54 X^2
 55 +
 56 ST/ 01
 57 ST/ 03
 58 ST/ 05
 59 ST/ 08
 60 STO 13          
 61 ST+ 13
 62 SQRT
 63 RCL 08
 64 RCL 00
 65 R^
 66 +
 67 ST* 08
 68 STO 09
 69 RCL 03
 70 ST- 08
 71 *
 72 -
 73 ST+ X
 74 X<> 09
 75 STO 03
 76 R-P
 77 RCL 08
 78 +
 79 ST+ X
 80 STO 08
 81 X<>Y
 82 D-R
 83 STO 00
 84 R^
 85 /
 86 STO 06
 87 RCL 01
 88 RCL 03
 89 ST* 01
 90 RCL 05
 91 ST- 01
 92 *
 93 -
 94 STO 02          
 95 ST+ 09
 96 RCL 01
 97 ST+ 04
 98 ST+ 08
 99 RCL 03
100 *
101 +
102 STO 05
103 LASTX
104 RCL 03
105 +
106 ST+ X
107 +
108 STO 07
109 RCL 05
110 +
111 *
112 596.51444
113 STO 10
114 /
115 RCL 07        
116 +
117 *
118 RCL 01
119 13
120 *
121 STO T
122 -
123 6
124 -
125 *
126 RCL 02
127 5
128 *
129 STO 12
130 +
131 RCL 05
132 *
133 +
134 RCL 01
135 X^2
136 STO 07
137 STO 14
138 21
139 *
140 +
141 RCL 07
142 RCL 02
143 X^2
144 STO 11
145 ST* 13
146 ST+ 13
147 ST+ 14
148 ST+ X
149 -
150 RCL 03        
151 RCL 06
152 ST/ 02
153 ST* 05
154 /
155 ST* 11
156 *
157 ST+ 07
158 RCL 11
159 -
160 RCL 04
161 4
162 ST/ 07
163 *
164 ST* 14
165 RCL 01
166 *
167 ST+ 07
168 RCL 00
169 X^2
170 *
171 STO 11
172 3
173 ST* Z
174 /
175 +
176 +
177 RCL 10
178 ST/ 13
179 /
180 RCL 05
181 RCL 02
182 ST- 01
183 ST* 13
184 ST+ X
185 +
186 -
187 RCL 04        
188 ST* 12
189 *
190 RCL 07
191 +
192 RCL 13
193 -
194 RCL 10
195 ST/ 14
196 /
197 RCL 01
198 +
199 RCL 08
200 RCL 09
201 ST* 12
202 2
203 /
204 +
205 ST* 11
206 LASTX
207 +
208 6
209 *
210 RCL 08
211 +
212 RCL 14
213 *
214 RCL 06
215 ST/ 09
216 X^2
217 *
218 RCL 12
219 +
220 RCL 11
221 -
222 RCL 10        
223 ST/ Z
224 /
225 RCL 08
226 RCL 09
227 -
228 +
229 364465
230 /
231 +
232 RCL 00
233 ST* Y
234 +
235 6378.137
236 *
237 END

 
      ( 319 bytes / SIZE 015 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example1:    λ = +166°08'02"2  ,  β  = -33°41'00"9
                      λ' = -101°56'06"0  ,  β' = +33°10'47"0
 

     166.08022   ENTER^
    -33.41009     ENTER^
   -101.56060    ENTER^
     33.10470     XEQ "TGC"   >>>>   D = 12138.70249 km                                                      ---Execution time = 13.3s--- 

-Exact D = 12138.702497....

Example2:    λ = -16°     ,  β  = -16°
                     λ' = +157°  ,  β' = +13°
 

     -16   ENTER^  ENTER^
     157  ENTER^
      13      R/S   >>>>   D = 19205.13652 km            

-Exact D = 19205.13653....
-In this example, the great elliptic arc length = 19205.463988...


Remarks:

-If we replace lines 232 to 237 with:

    RCL 00   ST* Y   ST* Z   ST+ Z   +   6378.137   ST* Z   *   END

 Y-output = Geodesic distance on the ellipsoid of revolution ( WGS84 )

-For instance:

     166.08022   ENTER^
    -33.41009     ENTER^
   -101.56060    ENTER^
     33.10470     XEQ "TGC"   >>>>   D = 12138.70249 km                               
                                              X<>Y    d = 12138.68505 km ( WGS84 )

-If you prefer:

   a = 6378.171645 km
   b = 6378.101575 km
   c = 6356.751868 km

 replace lines 112-229-235 with   596.51284   364101   6378.13661

-The result in example 1 becomes:  12138.70176 km


Notes:

-If   | λ - λ' | = 160° ,  the maximum  relative error is about  2 10-8

-If   | λ - λ' | = 120° ,  the root-mean-square relative error is ~ 0.37 10-8
-If   | λ - λ' | = 160° ,  the root-mean-square relative error is ~ 0.59 10-8
-If   | λ - λ' | = 168° ,  the root-mean-square relative error is ~ 0.75 10-8
-If   | λ - λ' | = 170° ,  the root-mean-square relative error is ~ 0.84 10-8

-Here are a few maximum errors ( in centimeters ):

 | λ - λ' | = 0°

  ( 0° , 50° )  ( 0° , -90° )  m = -7.5 cm
 ( 90° , 79° ) ( 90° , 42° ) M = +3.7 cm

 | λ - λ' | = 90°

 ( +30°, +43° ) ( +120°, -78° )  m = -8.6 cm
 ( -30°, +64° )  ( +60° , -16° )   M = +7.2 cm

 | λ - λ' | = 120°

 ( -45°, +21° )  ( +75° , -32° )    m = -13.7 cm
 ( +30°, +21° ) ( +150° , +20° ) M = +11.9 cm

 | λ - λ' | = 160°

 ( -80°, +34° )  ( +80° , -34° )  m= -37.1 cm
 ( 10°, +35° ) ( +170° , -35° )  M = +36.2  cm

 | λ - λ' | = 168°

 ( -84°, +59° ) ( +84° , -53° )  M = +62.2 cm
 (  6° , +58° ) ( +174° , -52° )  m = -61.9 cm

 | λ - λ' | = 170°

 ( +5° , +52° ) ( +175° , -57° )  m = -73.9 cm
 ( -85° , +53° ) ( +85° , -58° )  M = +74.7 cm

-If | λ - λ' | = 172° , the error can reach  104 cm ( perhaps a little more... )

-But the error may be relatively small.
-For instance, if  λ = β = 0 ,  λ' = 172°  here are a few errors ( in millimeters )


   β'    0°
  1°
 2°
    3°
   4°
    5°
    6°
    7°
   8°
  9°
 10°
 11°
 12°
 13°
 14°
 15°
 20°
  30°
 40°
  50°
  60°
  70°
 80°
 90°
 error  ~0
 46
 37
 -182
-484
 -646  -591
 -390 -147
 66
 221
 316
 363
 376
 368
 347
 203
  47
  2
 -12
 -21
 -39
 -37
-35


-If we compare with the program listed in §4°)d),  the precision is ~ the same if  | λ - λ' | <= 120°
-But if   | λ - λ' | = 160° , 170° ... we have a better accuracy... even better than the program in § 4°)e)  !


        f2)  Program(s)#2


-Unfortunately with the program above, if µ is very small, there are sometimes very large roundoff-errors.

-For instance,

   if     λ = 56°  ,  β  = 26°      λ' = 56°00'00"36  ,  β' = 26°00'00"36    "TGC" above gives   D = 0.014967941 km  but exact distance = 0.014957847... km
   if     λ = 56°  ,  β  = 26°      λ' = 56°00'00"0036  ,  β' = 26°00'00"0036    it yields:     D = 909806.6455 km  (!!!)  completely wrong.

-If we want to calculate very small distances, we must compute  µ  A  A'  B  B'  with other formulae:

    H = (λ - λ')/2    I = (λ + λ')/2    F = (β + β ')/2   G = (β - β ')/2

    S  = Sin2 (µ/2)  = Sin2 G Cos2 H  + Cos2 F Sin2 H
    C = Cos2 (µ/2) = Cos2 G Cos2 H + Sin2 F Sin2 H

    A = ( Sin2 G Cos2 F ) / S + ( Cos2 G Sin2 F ) / C
    B = ( Sin2 G Cos2 F ) / S - ( Cos2 G Sin2 F ) / C

-These formulae to compute  S  C  A  B  may be found here:   Jean Meeus - "Astronomical Algorithms" - Willmann-Bell -  ISBN 0-943396-35-2

-After some calculations, I've found the following formulae to compute  A' & B'

    A' = ( Cos I  Sin H  Cos F Cos G - Sin I  Cos H  Sin F  Sin G )2 / S + ( Sin I  Cos H  Cos F Cos G - Cos I  Sin H  Sin F  Sin G )2 / C
    B' = ( Cos I  Sin H  Cos F Cos G - Sin I  Cos H  Sin F  Sin G )2 / S - ( Sin I  Cos H  Cos F Cos G - Cos I  Sin H  Sin F  Sin G )2 / C

    A" = 2 ( A' - 1 ) + A  and   B" = 2 B' + B

-Of course, the program becomes longer:

Data Registers:   R00 thru R15: temp   R00 = µ  R01 = A - B ( Sin µ ) / µ   R02 = B ( Sin µ ) / µ  R08 = A"  R09 = B" ( Sin µ ) / µ   R12 = 5.B.B" ( 1 - A )
Flags: /
Subroutines: /


 

 01 LBL "TGC"
 02 DEG
 03 HR
 04 X<>Y
 05 HR
 06 R^
 07 HR
 08 STO 14
 09 -
 10 X<>Y
 11 R^
 12 HR
 13 STO 11
 14 -
 15 2
 16 STO 15
 17 ST/ Z
 18 /
 19 ST+ 11
 20 1
 21 STO 04
 22 P-R
 23 STO 03
 24 RDN
 25 STO 06
 26 STO 10          
 27 STO 12
 28 RDN
 29 ST+ 14
 30 LASTX
 31 P-R
 32 ST* 06
 33 R^
 34 *
 35 STO 00
 36 X^2
 37 X<>Y
 38 STO 07
 39 RCL 11
 40 RCL 04
 41 P-R
 42 ST* 00
 43 ST* 07
 44 ST* 10
 45 RDN
 46 STO 09
 47 *
 48 ST* 12
 49 X^2
 50 +
 51 X<> 10
 52 X^2
 53 RCL 06
 54 X^2
 55 RCL 07
 56 X^2
 57 +
 58 STO 08
 59 /
 60 STO 02
 61 RCL 03
 62 ST* 07
 63 RCL 09          
 64 ST* 06
 65 *
 66 X^2
 67 RCL 10
 68 /
 69 ST- 02
 70 +
 71 STO 01
 72 RCL 14
 73 RCL 04
 74 P-R
 75 ST* 12
 76 RCL 07
 77 *
 78 X<>Y
 79 ST* 00
 80 RCL 06
 81 *
 82 -
 83 X^2
 84 RCL 08
 85 /
 86 STO 09
 87 RCL 00
 88 RCL 12
 89 -
 90 X^2
 91 RCL 10
 92 /
 93 ST- 09
 94 +
 95 ST+ X
 96 RCL 15          
 97 ST* 09
 98 -
 99 +
100 X<> 08
101 SQRT
102 RCL 10
103 SQRT
104 R-P
105 RDN
106 ST+ X
107 D-R
108 STO 00
109 LASTX
110 RCL 04
111 P-R
112 STO 03
113 ST* T
114 RDN
115 ST/ Y
116 X^2
117 ST+ X
118 STO 13
119 X<>Y
120 STO 06
121 RCL 02
122 ST+ 09
123 R^
124 +
125 STO 05
126 LASTX
127 RCL 03
128 -
129 ST+ X
130 +
131 STO 07        
132 RCL 05
133 +
134 *
135 596.51444
136 STO 10
137 /
138 RCL 07
139 +
140 *
141 RCL 01
142 ST- 04
143 13
144 *
145 STO 07
146 -
147 6
148 +
149 *
150 RCL 02
151 5
152 *
153 STO 12
154 +
155 RCL 05
156 *
157 RCL 07
158 -
159 RCL 01
160 X^2
161 STO 07
162 STO 14
163 21
164 *
165 +
166 RCL 07
167 RCL 02
168 X^2
169 STO 11
170 ST* 13
171 ST+ 13
172 ST+ 14
173 ST+ X
174 -
175 RCL 03        
176 RCL 06
177 ST/ 02
178 ST* 05
179 /
180 ST* 11
181 *
182 ST+ 07
183 RCL 11
184 -
185 RCL 04
186 4
187 ST/ 07
188 *
189 ST* 14
190 RCL 01
191 *
192 ST- 07
193 RCL 00
194 X^2
195 *
196 STO 11
197 3
198 ST* Z
199 /
200 -
201 +
202 RCL 10
203 ST/ 13
204 /
205 RCL 05
206 RCL 02
207 ST- 01
208 ST* 13
209 ST+ X
210 +
211 +
212 RCL 04        
213 ST* 12
214 *
215 RCL 07
216 +
217 RCL 13
218 +
219 RCL 10
220 ST/ 14
221 /
222 RCL 01
223 -
224 RCL 08
225 RCL 09
226 ST* 12
227 RCL 15
228 /
229 +
230 ST* 11
231 LASTX
232 +
233 6
234 *
235 RCL 08
236 +
237 RCL 14
238 *
239 RCL 06
240 ST/ 09
241 X^2
242 *
243 RCL 12
244 -
245 RCL 11
246 +
247 RCL 10
248 ST/ Z
249 /
250 RCL 08        
251 RCL 09
252 -
253 +
254 364465
255 /
256 -
257 RCL 00
258 ST* Y
259 +
260 6378.137
261 *
262 END

 
      ( 340 bytes / SIZE 016 )
       

           STACK           INPUTS         OUTPUTS
               T           λ ( ° ' " )                /
               Z           β ( ° ' " )                /
               Y           λ' ( ° ' " )                /
               X           β' ( ° ' " )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example1:    λ = +166°08'02"2  ,  β  = -33°41'00"9
                      λ' = -101°56'06"0  ,  β' = +33°10'47"0
 

     166.08022   ENTER^
    -33.41009     ENTER^
   -101.56060    ENTER^
     33.10470     XEQ "TGC"   >>>>   D = 12138.70249 km                                                      ---Execution time = 14.2s--- 

-Exact D = 12138.702497....

Example2:    λ = -16°     ,  β  = -16°
                     λ' = +157°  ,  β' = +13°
 

     -16   ENTER^  ENTER^
     157  ENTER^
      13      R/S   >>>>   D = 19205.13652 km            

-Exact D = 19205.13653....
-In this example, the great elliptic arc length = 19205.463988...


Example3:      λ = 56°  ,  β  = 26°      λ' = 56°00'00"36  ,  β' = 26°00'00"36  

           56         ENTER^
           26         ENTER^
    56.000036   ENTER^
    26.000036      R/S           >>>>   D = 0.014957847 km

-Exact distance = 0.014957847... km


Example4:      λ = 56°  ,  β  = 26°      λ' = 56°00'00"0036  ,  β' = 26°00'00"0036  

            56            ENTER^
            26            ENTER^
    56.00000036   ENTER^
    26.00000036      R/S           >>>>   D = 0.000149578497 km

-Exact distance = 0.000149578497... km


-If the coordinates are in decimal degrees, we can save a few bytes.
-Here is a version with

   a = 6378.171645 km
   b = 6378.101575 km
   c = 6356.751868 km

Data Registers:   R00 thru R14: temp   R00 = µ  R01 = A - B ( Sin µ ) / µ   R02 = B ( Sin µ ) / µ  R08 = A"  R09 = B" ( Sin µ ) / µ   R12 = 5.B.B" ( 1 - A )
Flags: /
Subroutines: /


 

 01 LBL "TGC"
 02 DEG
 03 X<> T
 04 STO 11
 05 -
 06 X<> Z
 07 -
 08 2
 09 STO 14
 10 ST/ Z
 11 /
 12 ST+ Z
 13 1
 14 STO 04
 15 P-R
 16 STO 03
 17 RDN
 18 STO 06
 19 STO 10
 20 STO 12
 21 RDN
 22 ST+ 11
 23 LASTX
 24 P-R
 25 ST* 06
 26 R^
 27 *
 28 STO 00          
 29 X^2
 30 X<>Y
 31 STO 07
 32 R^
 33 RCL 04
 34 P-R
 35 ST* 00
 36 ST* 07
 37 ST* 10
 38 RDN
 39 STO 09
 40 *
 41 ST* 12
 42 X^2
 43 +
 44 X<> 10
 45 X^2
 46 RCL 06
 47 X^2
 48 RCL 07
 49 X^2
 50 +
 51 STO 08
 52 /
 53 STO 13
 54 RCL 03
 55 ST* 07
 56 RCL 09
 57 ST* 06
 58 *
 59 X^2
 60 RCL 10
 61 /
 62 ST- 13
 63 +
 64 STO 01          
 65 RCL 11
 66 RCL 04
 67 P-R
 68 ST* 12
 69 RCL 07
 70 *
 71 X<>Y
 72 ST* 00
 73 RCL 06
 74 *
 75 +
 76 X^2
 77 RCL 08
 78 /
 79 STO 09
 80 RCL 00
 81 RCL 12
 82 +
 83 X^2
 84 RCL 10
 85 /
 86 ST- 09
 87 +
 88 ST+ X
 89 RCL 14
 90 ST* 09
 91 -
 92 +
 93 X<> 08
 94 SQRT
 95 RCL 10
 96 SQRT
 97 R-P
 98 RDN
 99 ST+ X
100 D-R
101 STO 00        
102 LASTX
103 RCL 04
104 P-R
105 STO 03
106 R^
107 ST- 04
108 *
109 X<>Y
110 ST/ Z
111 X^2
112 ST+ X
113 X<> 13
114 STO 02
115 ST+ 09
116 +
117 STO 05
118 RCL 03
119 RCL 04
120 *
121 ST+ X
122 -
123 STO 07
124 RCL 05
125 +
126 *
127 596.51284
128 STO 10
129 /
130 RCL 07
131 +
132 *
133 RCL 01
134 13
135 *
136 STO 07        
137 -
138 6
139 +
140 *
141 RCL 02
142 5
143 *
144 STO 12
145 +
146 RCL 05
147 *
148 RCL 07
149 -
150 RCL 01
151 X^2
152 STO 07
153 STO 11
154 21
155 *
156 +
157 RCL 07
158 RCL 02
159 X^2
160 STO 06
161 ST* 13
162 ST+ 11
163 ST+ 13
164 ST+ X
165 -
166 RCL 03
167 R^
168 STO 03        
169 ST/ 02
170 ST* 05
171 /
172 ST* 06
173 *
174 ST+ 07
175 RCL 06
176 -
177 RCL 04
178 4
179 ST/ 07
180 *
181 ST* 11
182 RCL 01
183 *
184 ST- 07
185 RCL 00
186 X^2
187 *
188 STO 06
189 3
190 ST* Z
191 /
192 -
193 +
194 RCL 10
195 ST/ 13
196 /
197 RCL 05
198 RCL 02
199 ST- 01
200 ST* 13
201 ST+ X
202 +
203 +
204 RCL 04        
205 ST* 12
206 *
207 RCL 07
208 +
209 RCL 13
210 +
211 RCL 10
212 ST/ 11
213 /
214 RCL 01
215 -
216 RCL 08
217 RCL 09
218 ST* 12
219 RCL 14
220 /
221 +
222 ST* 06
223 LASTX
224 +
225 6
226 *
227 RCL 08
228 +
229 RCL 11
230 *
231 RCL 03
232 ST/ 09
233 X^2
234 *
235 RCL 12
236 -
237 RCL 06        
238 +
239 RCL 10
240 ST/ Z
241 /
242 RCL 08
243 RCL 09
244 -
245 +
246 364101
247 /
248 -
249 RCL 00
250 ST* Y
251 +
252 6378.13661
253 *
254 END

 
      ( 336 bytes / SIZE 015 )
       

           STACK           INPUTS         OUTPUTS
               T             λ ( ° )                /
               Z             β ( ° )                /
               Y             λ' ( ° )                /
               X             β' ( ° )          D ( km )
 
  Where  D is the geodesic distance on the triaxial ellipsoid

Example1:    λ = +166°1339444  ,  β  = -33°68358333
                      λ' = -101°935          ,  β' = +33°17972222
 

     166.1339444   ENTER^
    -33.68358333   ENTER^
   -101.9350000    ENTER^
     33.17972222   XEQ "TGC"   >>>>   D = 12138.70176 km                                                      ---Execution time = 14.1s---

Example2:    λ = -16°     ,  β  = -16°
                     λ' = +157°  ,  β' = +13°
 

     -16   ENTER^  ENTER^
     157  ENTER^
      13      R/S   >>>>   D = 19205.13532 km            


Remark:

-If we replace lines 249 to 254 with:

    RCL 00   ST* Y   ST* Z   ST+ Z   +   6378.13661   ST* Z   *   END

 Y-output = Geodesic distance on the ellipsoid of revolution

-For instance:

     166.1339444   ENTER^
    -33.68358333   ENTER^
   -101.9350000    ENTER^
     33.17972222   XEQ "TGC"   >>>>   D = 12138.70176 km                          
                                                  X<>Y    d = 12138.68430 km


-With the golden search to minimize the sum of 2 geodesic distances, the maximum error becomes much smaller:

 
 01 LBL "DDD"
 02 STO 19
 03 RDN
 04 STO 18
 05 RDN
 06 STO 17
 07 X<>Y
 08 STO 16          
 09 R^
 10 X<>Y
 11 -
 12 R^
 13 COS
 14 P-R
 15 RCL Z
 16 COS
 17 +
 18 R-P
 19 CLX
 20 RCL 16
 21 +
 22 STO 20
 23 GTO 00
 24 LBL 12
 25 STO 28
 26 RCL 20
 27 X<>Y
 28 RCL 18
 29 RCL 19          
 30 XEQ "TGC"
 31 STO 24
 32 RCL 16
 33 RCL 17
 34 RCL 20
 35 RCL 28
 36 XEQ "TGC"
 37 RCL 24
 38 +
 39 RTN
 40 LBL 00
 41 90
 42 ENTER
 43 STO 22
 44 CHS
 45 STO 21
 46 -
 47 5
 48 SQRT
 49 1
 50 +
 51 2
 52 /
 53 STO 27          
 54 /
 55 RCL 21
 56 +
 57 STO 25
 58 XEQ 12
 59 STO 26
 60 LBL 10
 61 RCL 25
 62 RCL 21
 63 -
 64 RCL 27
 65 /
 66 RCL 21
 67 +
 68 STO 23          
 69 XEQ 12
 70 STO 24
 71 VIEW 24
 72 RCL 26
 73 X<Y?
 74 GTO 02
 75 RCL 23
 76 X<> 25
 77 STO 22
 78 RCL 24
 79 STO 26
 80 GTO 04
 81 LBL 02
 82 RCL 22
 83 STO 21
 84 RCL 23
 85 STO 22
 86 LBL 04
 87  E-4
 88 RCL 21          
 89 RCL 23
 90 -
 91 ABS
 92 X>Y?
 93 GTO 10
 94 RCL 23
 95 RCL 24
 96 CLD
 97 END

 
      ( 168 bytes / SIZE 029 )
 
 

           STACK            INPUTS         OUTPUTS
               T            L ( deg )                /
               Z            b ( deg )                /
               Y            L' ( deg )           b" ( deg )
               X            b' ( deg )           D ( km )

   Where  D is the geodesic distance on the triaxial ellipsoid
     and    b" is the latitude of the "midpoint"

Example:   With (L,b) = (0°,0°)  &  (L',b') = (179.85°,0°)

        0         ENTER^  ENTER^
    179.85    ENTER^
        0         XEQ "DDD"  >>>>   D = 20001.90494  km
                                        X<>Y  b" ~ -75.52°

-Exact distance = 20001.904992...

Notes:

-Very slow with HP41 but only a few seconds with V41.
-Here is another method to minimize the sum of 2 geodesic distances:

 
 01 LBL "DDD"
 02 STO 19
 03 RDN
 04 STO 18
 05 RDN
 06 STO 17
 07 RDN
 08 STO 16          
 09 RDN
 10 X<> T
 11 -
 12 R^
 13 COS
 14 P-R
 15 X<>Y
 16 X<> Z
 17 COS
 18 ST+ Y
 19 X<> L
 20 SIN
 21 R^
 22 SIN
 23 +
 24 X<> Z
 25 X<>Y
 26 R-P
 27 RCL Z
 28 X<>Y
 29 R-P
 30 X<> Z
 31 RCL 16          
 32 +
 33 X<>Y
 34 STO 21
 35 X<>Y
 36 STO 20
 37 10
 38 STO 28
 39 RCL 21
 40 STO 26
 41 XEQ 10
 42 STO 27
 43 LBL 01
 44 RCL 26
 45 RCL 28
 46 +
 47 XEQ 10
 48 STO 29
 49 LBL 02
 50 RCL 26
 51 RCL 28
 52 -
 53 XEQ 10
 54 STO 30          
 55 LBL 03
 56 VIEW 27
 57 RCL 29
 58 X>Y?
 59 X<>Y
 60 RCL 27
 61 X>Y?
 62 X<>Y
 63 RCL 27
 64 X=Y?
 65 GTO 05
 66 CLX
 67 RCL 29
 68 X=Y?
 69 GTO 04
 70 RCL 30
 71 X<> 27
 72 STO 29
 73 RCL 28
 74 ST- 26
 75 GTO 02
 76 LBL 04
 77 X<> 27
 78 STO 30
 79 RCL 28          
 80 ST+ 26
 81 RCL 26
 82 +
 83 XEQ 10
 84 STO 29
 85 RCL 30
 86 GTO 03
 87 LBL 05
 88 3
 89 ST/ 28
 90 RCL 28
 91 ABS
 92  E-4
 93 X<Y?
 94 GTO 01
 95 GTO 11
 96 LBL 10
 97 STO 24
 98 RCL 16
 99 RCL 17          
100 RCL 20
101 RCL 24
102 XEQ "TGC"
103 STO 25
104 RCL 20
105 RCL 24
106 RCL 18
107 RCL 19
108 XEQ "TGC"
109 RCL 25
110 +
111 RTN
112 LBL 11
113 RCL 27
114 CLD
115 END

 
      ( 203 bytes / SIZE 031 )
 
 

           STACK            INPUTS         OUTPUTS
               T            L ( deg )                /
               Z            b ( deg )                /
               Y            L' ( deg )                /
               X            b' ( deg )           D ( km )

   Where  D is the geodesic distance on the triaxial ellipsoid  

Example1:   With (L,b) = (0°,0°)  &  (L',b') = (179.85°,0°)

        0         ENTER^  ENTER^
    179.85    ENTER^
        0         XEQ "DDD"  >>>>   D = 20001.90494  km

-Exact distance = 20001.904992...
-The error becomes ~ 5 cm instead of 19 km

Example2:    λ = 5°     ,   β  = 52°
                     λ' = 175° ,  β' = -57°
 

      5    ENTER^  
     52   ENTER^
    175  ENTER^
    -57      R/S   >>>>   D = 19160.59422 km                ---Execution time = 11m21s---

-Exact distance = 19160.5941938...
-The error becomes ~ 3 cm instead of 74 cm


5°)  Transformation of Coordinates


      a)  Geocentric Coordinates <> Geodetic Coordinates


-The formulae between the geodetic longitude L & geodetic latitude B and the cartesian coordinates x , y , z  of a point on a triaxial ellipsoid are:

    x = k a2 Cos B Cos L
    y = k b2 Cos B Sin L                 
    z = k c2 Sin B

  where    k = ( a2 Cos2 B Cos2 L + b2 Cos2 B Sin2 L + c2 Sin2 B ) -1/2



Data Registers: /
Flags: /
Subroutines: /


 01 LBL "LCLD"
 02 DEG
 03 HR
 04 1
 05 P-R
 06 X<>Y          
 07 6356752.314
 08 X^2
 09 /
 10 X<> Z
 11 HR
 12 X<>Y          
 13 P-R
 14 6378102
 15 X^2
 16 ST/ Z          
 17 CLX
 18 6378172
 19 X^2
 20 /
 21 R-P
 22 X<>Y          
 23 RDN
 24 R-P
 25 X<>Y          
 26 HMS
 27 R^
 28 HMS
 29 END

     
         ( 62 bytes / SIZE 000 )

 
           STACK           INPUTS         OUTPUTS
               Y           λ ( ° ' " )          β' ( ° ' " )
               X           β ( ° ' " )          λ' ( ° ' " )
 

Example:      Geocentric longitude & latitude:      λ = 124°41'     β = 57°16'


  124.41  ENTER^
   57.16   XEQ "LCLD"   >>>>   λ' = 124°40'57"881  = geodetic longitude                              ---Execution time = 4s---
                                       X<>Y   β' = 57°26'28"9454  =  geodetic latitude



 01 LBL "LDLC"
 02 DEG
 03 HR
 04 1
 05 P-R
 06 X<>Y          
 07 6356752.314
 08 X^2
 09 *
 10 X<> Z          
 11 HR
 12 X<>Y
 13 P-R
 14 6378172
 15 X^2
 16 *
 17 X<>Y          
 18 6378102
 19 X^2
 20 *
 21 X<>Y          
 22 R-P
 23 X<>Y
 24 HMS
 25 RDN
 26 R-P
 27 X<>Y          
 28 HMS
 29 R^
 30 END

     
         ( 62 bytes / SIZE 000 )
      
 
           STACK           INPUTS         OUTPUTS
               Y           λ ( ° ' " )          β' ( ° ' " )
               X           β ( ° ' " )          λ' ( ° ' " )
 

Example:      Geodetic longitude & latitude:      λ = 124°40'57"881     β = 57°26'28"9454


  124.4057881   ENTER^
  57.26289454   XEQ "LDLC"   >>>>   λ' = 124°40'59"999  = geocentric longitude                              ---Execution time = 4s---
                                                  X<>Y   β' = 57°16               =  geocentric latitude


      b)  WGS84 Coordinates -> Triaxial Ellipsoid Geocentric Coordinates


-We simply add  14°92911 to the WGS84 longitude λ to obtain  λ' = triaxial ellipsoid geocentric latitude.
-With the WGS84 latitude β , we have  Tan β' = (6356.752314/6378.137)2 Tan  β     ( β' = Triaxial ellipsoid geocentric latitude )



Data Registers: /
Flags: /
Subroutines: /


 01 LBL "GD2GC3"
 02 DEG
 03 HR
 04 1
 05 P-R
 06 .99330562
 07 /
 08 R-P
 09 RDN
 10 HMS
 11 X<>Y
 12 HR
 13 14.92911
 14 +
 15 HMS
 16 END

 
( 42 bytes / SIZE 000 )

 
           STACK           INPUTS         OUTPUTS
               Y           λ ( ° ' " )          β' ( ° ' " )
               X           β ( ° ' " )          λ' ( ° ' " )
 

Example:      λ = 124°41 '     β = 57°16'   ( WGS84 geocentric longitude & geodetic latitude )

   124.41   ENTER^
    57.16    XEW "GD2GC3"   >>>>   λ' = 139°36'44"796                         ---Execution time = 2s---
                                               X<>Y  β' = 57°05'28"9352


Remark:

-The values of a & b  that are used in all these programs are those given by WGS84.

-According to  G. Panou, R. Korakitis, and G. Pantazis  ( cf "Fitting a triaxial ellipsoid to a geoid model" ( 2020 ) )

   a = 6378.17192 km
   b = 6378.10206 km
   c = 6356.75217 km

and the equatorial longitude of the major semi-axis = –14.9367 degrees

-IERS2003 suggests other numbers:  mean equatorial radius = 6378.13661 km & flattening = 1/298.256421 so, polar radius = 6356.751868 km

-For the triaxial ellipsoid, recent evaluations suggest:  equatorial flattening = 1/91026
-So it yields::

   a = 6378.171645 km
   b = 6378.101575 km
   c = 6356.751868 km