Overview
1°) Volume
2°) Surface Area
-Hügelschäffer egg is defined by:
2 w x y2 + b2 x2 + ( a2 + w2 ) y2 - a2 b2 = 0
1°) Volume
-Volume = ( Pi b2 / ( 4 w3 )) [ ( a2 + w2 )2 Ln [ ( a - w ) / ( a + w ) ] + 2 a w ( a2 + w2 ) ]
Data Registers: R00: temp R01 = a R02 = b R03 = w
Flags: /
Subroutines: /
01 LBL "EGGV" 02 STO 03 03 X^2 04 STO 00 05 X<>Y 06 STO 02 07 X<> Z |
08 STO 01 09 X^2 10 ST- 00 11 + 12 RCL 01 13 ST* Y 14 RCL 03 |
15 ST* Z 16 ST- Y 17 RCL 01 18 + 19 / 20 SQRT 21 LN |
22 RCL 00 23 X^2 24 * 25 + 26 RCL 02 27 RCL 03 28 ST/ Z |
29 / 30 X^2 31 * 32 PI 33 * 34 2 35 / 36 END |
( 51 bytes / SIZE 004 )
STACK | INPUTS | OUTPUTS |
Z |
a |
/ |
Y |
b |
/ |
X | w | V |
Example: a = 7 b = 5 w = 2
7 ENTER^5 ENTER^
2 XEQ "EGGV" >>>> V = 720.9268000
Note:
-If w > a add ABS after line 19
2°) Surface Area
Area = §-a+a 2 Pi y sqrt [ 1 + ( dy / dx )2 ] dx
= 2 Pi b §-a+a sqrt [ ( a2 - x2 ) ( a2 + w2 + 2 w x )3 + b2 ( w x2 + ( a2 + w2 ) x + a2 w )2 ] / ( a2 + w2 + 2 w x )2 dx
-This program calls "GL3" = the 3-point Gauss-Legendre formula ( cf "Numerical Integration for the HP41" §1°)a) )
-The first result calls "GL3" with n = 4 ( line 12 )
-The second result with n = 8 ( line 22 )
-The third result with n = 16 ( line 22 ) ...
Data Registers: R11 = a R12 = b R13 = w
Flags: /
Subroutine: "GL3" ( cf "Numerical Integration for the HP41" §1°)a) )
01 LBL "EGGS" 02 STO 13 03 RDN 04 STO 12 05 X<>Y 06 STO 11 07 STO 02 08 CHS 09 STO 01 10 "T" 11 ASTO 00 12 4 13 STO 03 |
14 LBL 00 15 XEQ "GL3" 16 RCL 12 17 * 18 PI 19 * 20 ST+ X 21 RTN 22 2 23 ST* 03 24 GTO 00 25 LBL "T" 26 STO 10 |
27 X^2 28 RCL 11 29 X^2 30 STO 14 31 X<>Y 32 - 33 RCL 10 34 ST+ X 35 RCL 13 36 ST* Y 37 X^2 38 RCL 14 39 + |
40 STO T 41 + 42 ST* Y 43 X^2 44 STO 15 45 * 46 RCL 10 47 RCL 13 48 ST* 14 49 * 50 R^ 51 + 52 RCL 10 |
53 * 54 RCL 14 55 + 56 RCL 12 57 * 58 X^2 59 + 60 SQRT 61 RCL 15 62 / 63 RTN 64 END |
( 91 bytes / SIZE 016 )
STACK | INPUTS | OUTPUTS |
Z |
a |
/ |
Y |
b |
/ |
X | w | A |
Example1: a = 7 b = 5 w = 2
7 ENTER^
5 ENTER^
2 XEQ "EGGS" >>>> A = 399.6311024 ---Execution time = 21s ---
R/S A = 399.6263120
R/S A = 399.6262484
Example2: a = 2.854 b = 2.2155 w = 0.9138298
2.854 ENTER^2.2155 ENTER^
0.9138298 XEQ "EGGS" >>>> A = 73.61211724
R/S A = 73.61189370
R/S A = 73.61192002
Reference:
[1] HUGELSCHAFFER EGG CURVE AND SURFACE - Maja Petrovic and Branko Malesevic