Kummer's Function for the HP-41
Overview
1°) Real Variable
2°) Complex Variable
-Kummer's function M(a,b,x) is defined by
M(a;b;x) = 1 + (a)1/(b)1.
x1/1! + ............. + (a)n/(b)n
. xn/n! + .......... where (a)n = a(a+1)(a+2)
...... (a+n-1)
1°) Real Variable
Data Registers: R00 = x ( Registers R01 R02 are to be initialized before executing "KUM" )
• R01 = a
• R02 = b
Flags: /
Subroutines: /
01 LBL "KUM"
02 STO 00 03 CLST 04 SIGN 05 ENTER^ 06 STO T |
07 LBL 01
08 X<> T 09 RCL 01 10 R^ 11 ST+ Y 12 RDN |
13 *
14 RCL 02 15 R^ 16 ST+ Y 17 ISG X 18 CLX |
19 ST* Y
20 RDN 21 / 22 RCL 00 23 * 24 STO T |
25 X<>Y
26 ST+ Y 27 X#Y? 28 GTO 01 29 END |
( 46 bytes / SIZE 002 )
STACK | INPUTS | OUTPUTS |
X | x | M(a;b;x) |
L | / | x |
Example: Compute M(2;3;-Pi)
2 STO 01
3 STO 02
PI CHS XEQ "KUM" yields
0.166374562 ( in 13 seconds )
Notes:
a) 2x (Pi)-1/2 M(1/2;3/2;-x2)
= erf(x) = error function
b) (x/2)n
M(n+1/2;2n+1;2x) = Gamma(1+n) ex In(x)
where In = a modified Bessel function
c) (xa/a)
M(a;a+1;-x) = incgam(a;x) = §0x
e-t ta-1 dt
( incgam = incomplete gamma function )
and many other functions are related to Kummer's functions.
2°) Complex Variable
-The parameters a & b are still real, but the variable
z = x + i.y is complex
Data Registers: R00 and R03 thru R08: temp ( Registers R01 R02 are to be initialized before executing "KUMZ" )
• R01 = a
• R02 = b
Flags: /
Subroutines: /
01 LBL "KUMZ"
02 R-P 03 STO 00 04 X<>Y 05 STO 03 06 CLX 07 STO 05 08 STO 06 09 STO 08 10 SIGN 11 STO 04 |
12 STO 07
13 LBL 01 14 RCL 03 15 RCL 08 16 + 17 STO 08 18 RCL 01 19 RCL 02 20 RCL 06 21 ST+ Z 22 + |
23 ISG 06
24 CLX 25 RCL 06 26 * 27 / 28 RCL 00 29 * 30 RCL 07 31 * 32 STO 07 33 P-R |
34 RCL 04
35 + 36 STO 04 37 LASTX 38 - 39 X^2 40 X<>Y 41 RCL 05 42 + 43 STO 05 44 LASTX |
45 -
46 X^2 47 + 48 X#0? 49 GTO 01 50 RCL 05 51 RCL 04 52 END |
( 64 bytes / SIZE 009 )
STACK | INPUTS | OUTPUTS |
Y | y | y' |
X | x | x' |
with Kum ( a ; b ; x+i.y ) = x' + i.y'
Example: If a = 4 ; b = 3 4 STO 01 3 STO 02
2 ENTER^
1 XEQ "KUMZ >>>> -3.156090293
X<>Y 2.541499313
Whence Kum ( 4 ; 3 ; 1 + 2.i ) = -3.156090293
+ i. 2.541499313
Reference:
[1] Abramowitz and Stegun , "Handbook of Mathematical Functions"
- Dover Publications - ISBN 0-486-61272-4