Diurnal Parallax for the HP-41
Overview
1°) Azimuthal Coordinates
2°) Equatorial Coordinates
-The difference between the topocentric coordinates and the geocentric
coordinates is called "parallax"
-The vectorial relation OP = OT + TP gives us the
required formulae to compute the parallax for the Moon , the planets ...
where O = the observer , T = the center of the Earth
and P = planet , Sun , Moon , .....
1°) Azimuthal Coordinates
-Let Az = geocentric azimuth , h = geocentric height and Az' &
h' the corresponding topocentric values.
-Let D = distance TP , D' = distance OP
-Let b = geographic ( i-e geodetic, i-e astronomical ) latitude
of the observer, b' its geocentric latitude
-Let Alt = altitude of the observer
-And a = Earth equatorial radius = 6378137 m , f = Earth flattening
= 1/298.257
-We have the following rigorous formulae:
D' cos Az' cos h' =
D cos Az cos h - a r sin ( b - b' )
D' sin Az' cos h'
= D sin Az cos h
D' sin h' = D sin h - a
r cos ( b - b' )
tan u = ( 1 - f ) tan b
r sin b' = (
1 - f ) sin u + ( Alt / 6378137 ) sin b
( r = OT with Earth equatorial radius as unity )
r cos b' =
cos u + ( Alt / 6378137 ) cos b
Data Registers: R00 & R04 thru R07: temp ( Registers R01 thru R03 are to be initialized before executing "PAR" )
• R01 = D ( AU )
• R02 = b ( ° ' " )
• R03 = Alt ( m )
Flags: /
Subroutines: "R-S" & "S-R"
( cf "Spherical Coordinates" or "Transformation of Coordinates" )
01 LBL "PAR"
02 DEG 03 HR 04 X<>Y 05 HR 06 X<>Y 07 RCL 01 08 XEQ "S-R" 09 STO 05 10 RDN 11 STO 06 12 X<>Y 13 STO 07 |
14 RCL 02
15 HR 16 STO 04 17 1 18 P-R 19 X<>Y 20 LASTX 21 298.257 22 1/X 23 - 24 STO 00 25 * 26 X<>Y |
27 R-P
28 SIGN 29 P-R 30 X<>Y 31 RCL 00 32 * 33 RCL 03 34 6378137 35 / 36 RCL 04 37 X<>Y 38 P-R 39 ST+ T |
40 RDN
41 + 42 X<>Y 43 R-P 44 RCL 04 45 RCL Z 46 - 47 X<>Y 48 P-R 49 23454.79 50 ST/ Z 51 / 52 ST- 07 |
53 X<>Y
54 ST- 05 55 RCL 07 56 RCL 06 57 RCL 05 58 XEQ "R-S" 59 X<> Z 60 HMS 61 X<>Y 62 HMS 63 END |
( 104 bytes / SIZE 008 )
STACK | INPUTS | OUTPUTS |
Y | h ( ° ' " ) | h' ( ° ' " ) |
X | Az ( ° ' " ) | Az' ( ° ' " ) |
Example: At the Palomar Obsevatory:
D = 0.003 AU STO 01
b = 33°21'22" STO 02
Alt = 1706 m STO 03
h = 60°12' , Az = 41°16'
60.12 ENTER^
41.16 XEQ "PAR"
>>>> Az' = 41°16'11"97
---Execution time = 8s---
RDN h' = 59°47'32"06
-With Alt = 0 STO 03 , it yields
Az' = 41°16'11"97
h' = 59°47'32"46
Notes:
-The distance D' is in Z-register. Here, D' = 0.002963056
AU
-Line 49 may be replace by 23455 without a great loss of accuracy.
( This value is 149597871 / 6378.137 = 1 Astronomical
Unit / Earth's equatorial radius )
-In order to avoid using the subroutines "S-R" & "R-S", we can rewrite the formulae as follows:
Tan Az' = ( sin Az cos h ) / [ cos Az cos h - ( a
r / D ) sin ( b - b' ) ]
Tan h' = [ sin h - ( a r / D ) cos (
b - b' ) ] / [ cos2 h - 2 ( a r / D ) cos Az cos h sin ( b -
b' ) + ( a r / D )2 sin2 ( b - b' ) ] 1/2
-And if Alt = 0 , we have the approximate relations: r =
1 - f sin2 b and sin ( b - b' ) = f
sin 2b , cos ( b - b' ) = 1
-"PAR0" uses these formulae:
Data Registers: R00-R03-R04-R05: temp ( Registers R01 & R02 are to be initialized before executing "PAR0" )
• R01 = D ( AU )
• R02 = b ( ° ' " )
Flags: /
Subroutines: /
01 LBL "PAR0"
02 DEG 03 HR 04 STO 00 05 X<>Y 06 HR 07 1 08 P-R 09 STO 03 10 CLX 11 RCL 01 12 23454.79 |
13 *
14 1/X 15 RCL 02 16 HR 17 SIN 18 X^2 19 298.257 20 STO 04 21 / 22 1 23 X<>Y 24 - |
25 *
26 ST- Y 27 RCL 02 28 HR 29 ST+ X 30 SIN 31 RCL 04 32 / 33 * 34 STO 04 35 RCL 00 36 COS |
37 RCL 03
38 * 39 ST+ X 40 - 41 RCL 04 42 * 43 RCL 03 44 X^2 45 + 46 SQRT 47 R-P 48 X<>Y |
49 HMS
50 RCL 00 51 RCL 03 52 P-R 53 RCL 04 54 - 55 R-P 56 RDN 57 HMS 58 END |
( 83 bytes / SIZE 005 )
STACK | INPUTS | OUTPUTS |
Y | h ( ° ' " ) | h' ( ° ' " ) |
X | Az ( ° ' " ) | Az' ( ° ' " ) |
Example:
D = 0.003 AU STO 01
b = 33°21'22" STO 02
( Alt = 0 )
h = 60°12' , Az = 41°16'
60.12 ENTER^
41.16 XEQ "PAR0"
>>>> Az' = 41°16'11"97
---Execution time = 6s---
RDN h' = 59°47'32"46
Notes:
-So, we get almost the same results: error < 0"01
-In the case of the Palomar observatory, neglecting Alt does not produce
an error greater than 1 arcsecond for the Moon, much less for the planets.
Other Formulae:
-If a great precision is not required, we can use:
Az' = Az
and h' = h - ( a / D ) cos h
-These last formulas are very simple and better relations may be found.
-Here are some of them:
1°) Az' = Az + f ( a r / D ) sin Az sin 2b /
cos h
h'
= h + ( a r / D ) ( - cos h + f cos Az sin 2b sin h )
and even better:
2°) Az' - Az = Arctan { [ ( r a / D ) sin ( b
- b' ) sin Az ] / [ cos h - ( r a / D ) sin ( b - b' ) cos Az ] }
h'
- h = Arctan { - [ ( r a / D ) cos ( h +
( b - b' ) cos Az ] / [ 1 - ( r a / D ) sin ( h + ( b - b' ) cos Az ] }
-The last ones above produce the same accuracy as "PAR0" ... but it
seems there are some problems if h is close to 90° !
-Moreover, they lead to programs that are neither faster nor shorter
than "PAR0".
-So I think we can keep "PAR0" if the altitude of the observer may
be neglected and "PAR" otherwise...
2°) Equatorial Coordinates
-Similar methods are available if we know the hour angle H and the declination
d ( H = Local Sidereal Time minus Right Ascension )
-Their corrected values H' and d' are related to H and d by:
Formulae:
D' cos d' cos H' =
D cos d cos H - a r cos b'
D' cos d' sin H'
= D cos d sin H
D' sin d' = D sin d - a r sin
b'
tan u = ( 1 - f ) tan b
r sin b' = (
1 - f ) sin u + ( Alt / 6378137 ) sin b
r cos b' =
cos u + ( Alt / 6378137 ) cos b
Data Registers: R00 & R04 thru R07: temp ( Registers R01 thru R03 are to be initialized before executing "EPAR" )
• R01 = D ( AU )
• R02 = b ( ° ' " )
• R03 = Alt ( m )
Flags: /
Subroutines: "R-S" & "S-R"
( cf "Spherical Coordinates" or "Transformation of Coordinates" )
01 LBL "EPAR"
02 DEG 03 X<>Y 04 HR 05 X<>Y 06 HR 07 15 08 * 09 RCL 01 10 XEQ "S-R" 11 STO 05 12 RDN 13 STO 06 |
14 X<>Y
15 STO 07 16 RCL 02 17 HR 18 STO 04 19 1 20 P-R 21 X<>Y 22 LASTX 23 298.257 24 1/X 25 - 26 STO 00 |
27 *
28 X<>Y 29 R-P 30 SIGN 31 P-R 32 X<>Y 33 RCL 00 34 * 35 RCL 03 36 6378137 37 / 38 RCL 04 39 X<>Y |
40 P-R
41 ST+ T 42 RDN 43 + 44 23454.79 45 ST/ Z 46 / 47 ST- 07 48 X<>Y 49 ST- 05 50 RCL 07 51 RCL 06 52 RCL 05 |
53 XEQ "R-S"
54 X<> Z 55 HMS 56 X<>Y 57 15 58 / 59 24 60 MOD 61 HMS 62 END |
( 106 bytes / SIZE 008 )
STACK | INPUTS | OUTPUTS |
Y | d ( ° ' " ) | d' ( ° ' " ) |
X | H ( hh.mnss ) | H' ( hh.mnss ) |
Example: At the Palomar Obsevatory:
D = 0.003 AU STO 01
b = 33°21'22" STO 02
Alt = 1706 m STO 03
d = -15°28' H = 19h16m
-15.28 ENTER^
19.16 XEQ "EPAR"
>>>> H' = 19h13m19s02
---Execution time = 7s---
RDN d' = -15°57'17"00
-With Alt = 0 STO 03 , it yields
H' = 19h13m19s06
d' = -15°57'16"53
Notes:
-Like with the azimuthal coordinates, we can also avoid using the subroutines "S-R" & "R-S" by rewriting the formulae as follows:
Tan H' = ( cos d sin H ) / [ cos d cos H - ( a r
/ D ) cos b' ]
Tan d' = [ sin d - ( a r / D ) sin b' ] / [ cos2
d - 2 ( a r / D ) cos d cos H cos b' + ( a r / D )2 cos2
b' ] 1/2
-And if Alt = 0 , we have the approximate relations: r =
1 - f sin2 b and b' = b - f sin 2b
-The variant hereunder uses these formulae:
Data Registers: R00-R03-R04-R05: temp ( Registers R01 & R02 are to be initialized before executing "EPAR0" )
• R01 = D ( AU )
• R02 = b ( ° ' " )
Flags: /
Subroutines: /
01 LBL "EPAR0"
02 DEG 03 HR 04 15 05 * 06 STO 00 07 X<>Y 08 HR 09 1 10 P-R 11 STO 03 12 CLX 13 23454.79 14 RCL 01 15 * |
16 1/X
17 RCL 02 18 HR 19 STO 04 20 SIN 21 X^2 22 298.257 23 STO 05 24 / 25 1 26 X<>Y 27 - 28 * 29 RCL 04 30 ST+ X |
31 SIN
32 RCL 05 33 / 34 R-D 35 RCL 04 36 X<>Y 37 - 38 X<>Y 39 P-R 40 RDN 41 - 42 R^ 43 STO 04 44 STO 05 45 RCL 00 |
46 RCL 03
47 P-R 48 ST- 04 49 X<>Y 50 RDN 51 ST+ X 52 - 53 RCL 05 54 * 55 RCL 03 56 X^2 57 + 58 SQRT 59 R-P 60 X<>Y |
61 HMS
62 R^ 63 RCL 04 64 CHS 65 R-P 66 CLX 67 15 68 / 69 24 70 MOD 71 HMS 72 END |
( 101 bytes / SIZE 006 )
STACK | INPUTS | OUTPUTS |
Y | d ( ° ' " ) | d' ( ° ' " ) |
X | H ( hh.mnss ) | H' ( hh.mnss ) |
Example:
D = 0.003 AU STO 01
b = 33°21'22" STO 02
( Alt = 0 )
d = -15°28' H = 19h16m
-15.28 ENTER^
19.16 XEQ "EPAR"
>>>> H' = 19h13m19s06
---Execution time = 6s---
RDN d' = -15°57'16"52
References:
[1] Jean Meeus - "Astronomical Algorithms" - Willmann-Bell
- ISBN 0-943396-61-1
[2] F. Brunnow - "Spherical Astronomy"- New-York D. Van
Nostrand - ISBN B002KW46KG ( ? )