hp41programs

PlanetConj

Great Planetary Conjunctions for the HP-41


Overview
 

-This program tests successive New Moons to find great planetary conjunctions - geocentric positions.
-You give an initial date and an angle A to your HP-41 and your calculator
  will return the date of the next ( approximate ) conjunction and the angle µ as shown below ( µ <= A )

-Pluto is not taken into account.
 

                                                                               /  *
                                                                             /                         *
                                                                           /  µ                 *                  Planets
                       Earth ------ Moon ------------Sun -------------------------
                                                                          \  µ                                      *
                                                                            \         *
                                                                              \                             *
 

-The orbits are supposed circular (!) , so it is only a rough approximation...
-Check the results with a good software like "SOLEX" ( reference [1] )

-Of course, an emulator like V41 in turbo mode is almost indispensable.
 

Program Listing
 
 

Data Registers:   R00 thru R20: temp
Flags: /
Subroutines:  "J2" & "D2" ( cf "Julian and Gregorian Calendars for the HP-41" )

-Line 148 is a three-byte GTO 00
 
 

  01  LBL "GPC"
  02  XEQ "J2"
  03  29.53058886 
  04  STO 20 
  05  /
  06  INT
  07  STO 16
  08  X<>Y 
  09  STO 17
  10  28.216
  11  STO 01          
  12  1134733.024
  13  STO 02
  14  98.487
  15  STO 03
  16  225184.432
  17  STO 04
  18  74.968
  19  STO 05
  20  168590.733
  21  STO 06
  22  113.885
  23  STO 07
  24  329644.67
  25  STO 08
  26  129.611
  27  STO 09
  28  347772.588
  29  STO 10
  30  .022
  31  STO 11
  32  33.584
  33  STO 12
  34  355709.054
  35  STO 13
  36  23.883
  37  STO 14 
  38  357808.869
  39  STO 15 
  40  12368.53
  41  STO 18
  42  GTO 01
  43  LBL 00
  44  RCL 00          
  45  73 E-7
  46  *
  47  15 E-5
  48  -
  49  RCL 00
  50  *
  51  .015437 
  52  +
  53  RCL 00
  54  X^2
  55  *
  56  5.59766
  57  +
  58  RCL 16
  59  RCL 20
  60  *
  61  +
  62  INT
  63  LASTX
  64  FRC
  65  X<0?
  66  DSE Y
  67  FRC
  68  24
  69  ST* Y
  70  MOD
  71  HMS 
  72  X<>Y
  73  XEQ "D2"
  74  RCL 19          
  75  X<> Z
  76  X<>Y
  77  CLD 
  78  RTN
  79  LBL 10
  80  ISG 16
  81  LBL 01
  82  CLX
  83  X<> 19
  84  VIEW 16
  85  RCL 16
  86  RCL 18
  87  /
  88  STO 00
  89  RCL 02
  90  *
  91  RCL 01
  92  -
  93  XEQ 02
  94  X>Y?
  95  GTO 10
  96  RCL 04
  97  RCL 00
  98  *
  99  RCL 03
100  -
101  XEQ 02
102  X>Y?
103  GTO 10
104  RCL 05
105  RCL 06
106  RCL 00          
107  *
108  -
109  XEQ 02
110  X>Y?
111  GTO 10
112  RCL 07
113  RCL 08
114  RCL 00
115  *
116  -
117  XEQ 02
118  X>Y?
119  GTO 10
120  RCL 11
121  RCL 00
122  *
123  RCL 10
124  -
125  RCL 00
126  *
127  RCL 09
128  +
129  XEQ 02
130  X>Y?
131  GTO 10
132  RCL 12
133  RCL 13
134  RCL 00
135  *
136  -
137  XEQ 02
138  X>Y?
139  GTO 10
140  RCL 14          
141  RCL 15
142  RCL 00
143  *
144  -
145  XEQ 02
146  X>Y?
147  GTO 10
148  GTO 00
149  LBL 02
150  360
151  MOD
152  PI
153  R-D
154  X>Y?
155  CLX
156  ST+ X
157  -
158  ABS
159  ABS
160  RCL 19
161  X<Y?
162  X<>Y
163  STO 19
164  RCL 17
165  LASTX
166  RTN
167  END

 
     ( 367 bytes / SIZE 021 )
 
 

      STACK        INPUTS      OUTPUTS
           Z             /            µ
           Y            A     HH.MNSS
           X      yyyy.mndd   YYYY.MNDD

  Where the angles A and µ are expressed in degrees and the dates in the Gregorian Calendar.

Example:   Let's start with A = 60° and yyyy.mndd = 2000.0101

        60         ENTER^
 2000.0101   XEQ "GPC"   >>>>  2203.0610
                                           RDN       13.2613
                                           RDN        54.

-For the next conjuction, simply press  R/S  >>>>   2673.0408
                                                                   RDN        19.3755
                                                                   RDN        56.4°                  ... and so on ...

-Let's check these results with SOLEX

    •  On 2203/06/10 at 13h26m13s  we find the following geocentric ecliptic longitudes

   Sun      L = 78°9
  Moon   L = 77°7
Mercury  L = 95°9
 Venus     L = 74°8
  Mars     L = 71°6              So, all these celestial bodies are inside an angular sector of 68°4  Not perfect but better than 2x54°1
 Jupiter    L = 93°5
 Saturn    L = 18°9
 Uranus   L = 101°6
Neptune  L = 33°2

    •  On 2673/04/08 at 19h37m55s  we find the following geocentric ecliptic longitudes

   Sun      L = 19°3
  Moon   L = 12°4
Mercury  L = 17°3
 Venus     L = -3°1
  Mars     L =  0°9               Now, an angular sector of 58°6  Not perfect but again better than 2x56°4 ... and even better than the first example
 Jupiter    L = -39°3
 Saturn    L =  2°6
 Uranus   L = -26°9
Neptune  L = -15°2

Notes:

-The numbers of the successive New Moons are displayed when the program is running
-N°0 = New Moon on 2000/01/06 and so on ...

-You can also seek conjunctions before a given date
-Simply replace line 80 by  DSE 16 and you'll get for instance:

        60         ENTER^
 2000.0101   XEQ "GPC"   >>>>  1664.1217
                                           RDN       20.0827
                                           RDN        54.

-SOLEX gives for this date:

   Sun      L = 266°7
  Moon   L = 270°6
Mercury  L = 257°3
 Venus     L = 291°1
  Mars     L = 286°4               Now, in an angular sector of 56°3  Not yet perfect but better than the first 2 examples
 Jupiter    L = 292°2
 Saturn    L = 269°8
 Uranus   L = 313°6
Neptune  L = 286°7

Notes:

-As you can see, the true angular sector is often much smaller than twice the angle A
-So, it's not really necessary to use a small A-value.

Onset of the old Hindu calendars:

-The onset of these calendars is on -3101/01/23 ( proleptic Gregorian calendar )
-It's supposed to be a conjunction of all planets + Sun + Moon.
-Let's check it !

         60         ENTER^
 -3101.0201   XEQ "GPC"   >>>>  -3101.0123
                                             RDN         4.0907
                                             RDN       51.

-SOLEX gives the following longitudes:

   Sun      L = 304°0
  Moon   L = 306°8
Mercury  L = 288°7
 Venus     L = 316°6
  Mars     L = 300°6
 Jupiter    L = 317°5
 Saturn    L = 276°5
 Uranus   L = 340°7
Neptune  L = 250°3
  Pluto     L = 305°7
  Eris       L = 290°6

-All these celestial bodies are in an angular sector of 90°4 - almost a quadrant.
-It is remarkable, all the more that Uranus, Neptune and - a fortiori - Pluto & Xena/Lillah/Eris were unknown at that time !
-Just a coincidence ?  Perhaps...

-The angular sector is only 40°1 if we forget the planets beyond Saturn.

Another Interesting Result:

 •  On  -5724/12/14 - Gregorian calendar - 5h38  ( "GPC" gives  µ = 34°6 )  and  SOLEX

   Sun      L = 264°5
  Moon   L = 260°8
Mercury  L = 269°6
 Venus     L = 257°9
  Mars     L = 244°6                                angular sector of  33°5
 Jupiter    L = 265°9
 Saturn    L = 236°1
 Uranus   L = 239°2
Neptune  L = 244°4

-I have not found a smaller sector !
 

References:

[1]  Aldo Vitagliano: "SOLEX" software which may be downloaded freely from http://chemistry.unina.it/~alvitagl/solex/
[2]  Jean Meeus - "Mathematical Astronomy Morsels" - Willmann-Bell  -  ISBN 0-943396-51-4

-In reference [1], Jean Meeus has investigated when planetary quadrants occur
-He calculates the heliocentric coordinates - the position of the Moon is not taken into account,
 and gives his results between the years 0 and 4000