Great Planetary Conjunctions for the HP-41
Overview
-This program tests successive New Moons to find great planetary conjunctions
- geocentric positions.
-You give an initial date and an angle A to your HP-41 and your calculator
will return the date of the next ( approximate ) conjunction
and the angle µ as shown below ( µ <= A )
-Pluto is not taken into account.
/ *
/
*
/ µ
*
Planets
Earth ------ Moon ------------Sun -------------------------
\ µ
*
\ *
\
*
-The orbits are supposed circular (!) , so it is only a rough approximation...
-Check the results with a good software like "SOLEX" ( reference [1]
)
-Of course, an emulator like V41 in turbo mode is almost indispensable.
Program Listing
Data Registers: R00 thru R20: temp
Flags: /
Subroutines: "J2" & "D2" ( cf "Julian
and Gregorian Calendars for the HP-41" )
-Line 148 is a three-byte GTO 00
01 LBL "GPC"
02 XEQ "J2" 03 29.53058886 04 STO 20 05 / 06 INT 07 STO 16 08 X<>Y 09 STO 17 10 28.216 11 STO 01 12 1134733.024 13 STO 02 14 98.487 15 STO 03 16 225184.432 17 STO 04 18 74.968 19 STO 05 20 168590.733 21 STO 06 22 113.885 23 STO 07 24 329644.67 25 STO 08 26 129.611 27 STO 09 28 347772.588 29 STO 10 30 .022 31 STO 11 32 33.584 33 STO 12 34 355709.054 |
35 STO 13
36 23.883 37 STO 14 38 357808.869 39 STO 15 40 12368.53 41 STO 18 42 GTO 01 43 LBL 00 44 RCL 00 45 73 E-7 46 * 47 15 E-5 48 - 49 RCL 00 50 * 51 .015437 52 + 53 RCL 00 54 X^2 55 * 56 5.59766 57 + 58 RCL 16 59 RCL 20 60 * 61 + 62 INT 63 LASTX 64 FRC 65 X<0? 66 DSE Y 67 FRC 68 24 |
69 ST* Y
70 MOD 71 HMS 72 X<>Y 73 XEQ "D2" 74 RCL 19 75 X<> Z 76 X<>Y 77 CLD 78 RTN 79 LBL 10 80 ISG 16 81 LBL 01 82 CLX 83 X<> 19 84 VIEW 16 85 RCL 16 86 RCL 18 87 / 88 STO 00 89 RCL 02 90 * 91 RCL 01 92 - 93 XEQ 02 94 X>Y? 95 GTO 10 96 RCL 04 97 RCL 00 98 * 99 RCL 03 100 - 101 XEQ 02 102 X>Y? |
103 GTO 10
104 RCL 05 105 RCL 06 106 RCL 00 107 * 108 - 109 XEQ 02 110 X>Y? 111 GTO 10 112 RCL 07 113 RCL 08 114 RCL 00 115 * 116 - 117 XEQ 02 118 X>Y? 119 GTO 10 120 RCL 11 121 RCL 00 122 * 123 RCL 10 124 - 125 RCL 00 126 * 127 RCL 09 128 + 129 XEQ 02 130 X>Y? 131 GTO 10 132 RCL 12 133 RCL 13 134 RCL 00 135 * 136 - |
137 XEQ 02
138 X>Y? 139 GTO 10 140 RCL 14 141 RCL 15 142 RCL 00 143 * 144 - 145 XEQ 02 146 X>Y? 147 GTO 10 148 GTO 00 149 LBL 02 150 360 151 MOD 152 PI 153 R-D 154 X>Y? 155 CLX 156 ST+ X 157 - 158 ABS 159 ABS 160 RCL 19 161 X<Y? 162 X<>Y 163 STO 19 164 RCL 17 165 LASTX 166 RTN 167 END |
( 367 bytes / SIZE 021 )
STACK | INPUTS | OUTPUTS |
Z | / | µ |
Y | A | HH.MNSS |
X | yyyy.mndd | YYYY.MNDD |
Where the angles A and µ are expressed in degrees and the dates in the Gregorian Calendar.
Example: Let's start with A = 60° and yyyy.mndd = 2000.0101
60
ENTER^
2000.0101 XEQ "GPC" >>>>
2203.0610
RDN 13.2613
RDN 54.1°
-For the next conjuction, simply press R/S >>>>
2673.0408
RDN 19.3755
RDN 56.4°
... and so on ...
-Let's check these results with SOLEX
• On 2203/06/10 at 13h26m13s we find the following geocentric ecliptic longitudes
Sun L = 78°9
Moon L = 77°7
Mercury L = 95°9
Venus L = 74°8
Mars L = 71°6
So, all these celestial bodies are inside an angular sector of 68°4
Not perfect but better than 2x54°1
Jupiter L = 93°5
Saturn L = 18°9
Uranus L = 101°6
Neptune L = 33°2
• On 2673/04/08 at 19h37m55s we find the following geocentric ecliptic longitudes
Sun L = 19°3
Moon L = 12°4
Mercury L = 17°3
Venus L = -3°1
Mars L = 0°9
Now, an angular sector of 58°6 Not perfect but again better than
2x56°4 ... and even better than the first example
Jupiter L = -39°3
Saturn L = 2°6
Uranus L = -26°9
Neptune L = -15°2
Notes:
-The numbers of the successive New Moons are displayed when the program
is running
-N°0 = New Moon on 2000/01/06 and so on ...
-You can also seek conjunctions before a given date
-Simply replace line 80 by DSE 16 and you'll get for instance:
60
ENTER^
2000.0101 XEQ "GPC" >>>>
1664.1217
RDN 20.0827
RDN 54.9°
-SOLEX gives for this date:
Sun L = 266°7
Moon L = 270°6
Mercury L = 257°3
Venus L = 291°1
Mars L = 286°4
Now, in an angular sector of 56°3 Not yet perfect but better
than the first 2 examples
Jupiter L = 292°2
Saturn L = 269°8
Uranus L = 313°6
Neptune L = 286°7
Notes:
-As you can see, the true angular sector is often much smaller than
twice the angle A
-So, it's not really necessary to use a small A-value.
Onset of the old Hindu calendars:
-The onset of these calendars is on -3101/01/23 ( proleptic Gregorian
calendar )
-It's supposed to be a conjunction of all planets + Sun + Moon.
-Let's check it !
60
ENTER^
-3101.0201 XEQ "GPC" >>>>
-3101.0123
RDN 4.0907
RDN 51.6°
-SOLEX gives the following longitudes:
Sun L = 304°0
Moon L = 306°8
Mercury L = 288°7
Venus L = 316°6
Mars L = 300°6
Jupiter L = 317°5
Saturn L = 276°5
Uranus L = 340°7
Neptune L = 250°3
Pluto L = 305°7
Eris L = 290°6
-All these celestial bodies are in an angular sector of 90°4 - almost
a quadrant.
-It is remarkable, all the more that Uranus, Neptune and - a fortiori
- Pluto & Xena/Lillah/Eris were unknown at that time !
-Just a coincidence ? Perhaps...
-The angular sector is only 40°1 if we forget the planets beyond Saturn.
Another Interesting Result:
• On -5724/12/14 - Gregorian calendar - 5h38 ( "GPC" gives µ = 34°6 ) and SOLEX
Sun L = 264°5
Moon L = 260°8
Mercury L = 269°6
Venus L = 257°9
Mars L = 244°6
angular sector of 33°5
Jupiter L = 265°9
Saturn L = 236°1
Uranus L = 239°2
Neptune L = 244°4
-I have not found a smaller sector !
References:
[1] Aldo Vitagliano: "SOLEX" software which may be downloaded
freely from
http://chemistry.unina.it/~alvitagl/solex/
[2] Jean Meeus - "Mathematical Astronomy Morsels" - Willmann-Bell
- ISBN 0-943396-51-4
-In reference [1], Jean Meeus has investigated when planetary quadrants
occur
-He calculates the heliocentric coordinates - the position of
the Moon is not taken into account,
and gives his results between the years 0 and 4000