Overview
1°) What's the side of this Equilateral
Triangle ?
2°) Generalization to a Simplex
3°) Demonstration
-I found this problem in a reference [1] with the answer without a proof
-Then, it was logical to ask a similar question for a tetrahedron and - why
not - a simplex
-The generalized formula remains quite simple.
1°) What's the side of this Equilateral Triangle
?
A
*
* *
ABC is an equilateral triangle AB = AC = BC = x
*
*
* * M
*
AM = 57 BM = 65 CM = 73
A B C M are in the same plane
*
*
*
*
-> Calculate x
*
*
B *
* * * *
* * * *
C
-This problem may be solved in several ways:
a) Using the coordinates of the 4 points leads to a
3x3 non-linear system.
b) We can also write that the sum of the areas of the
3 triangles MAB + MBC + MAC = the area of ABC ( with Heron's formula
)
c) Or: the sum of the 3 angles MAB + MBC + MAC =
360° ( with the law of cosines )
-But there is a much simpler formula that is given in references [1] & [2]
-Let be a = MA , b = MB , c = MC we have 3 ( a4
+ b4 + c4 + x4 ) = ( a2 + b2
+ c2 + x2 )2
-This leads to a quadratic equation that is solved by "WST"
Data Registers: /
Flags: /
Subroutines: /
01 LBL "WST2" 02 X^2 03 ENTER^ 04 X^2 05 R^ 06 X^2 07 ST+ Z |
08 X^2
09 + 10 R^ 11 X^2 12 ST+ Z 13 X^2 14 + |
15 ST+ X
16 CHS 17 RCL Y 18 ENTER^ 19 * 20 + 21 3 |
22 * 23 SQRT 24 ST+ Z 25 - 26 2 27 ST/ Z 28 / |
29 SQRT
30 X<>Y 31 SQRT 32 END |
( 47 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Z | a | / |
Y | b | x' |
X | c | x |
Example: With the problem above:
57 ENTER^
65 ENTER^
73 XEQ "WST" >>>>
x = 112
RDN x' = 16.09347694
-So, x = 112
Note:
-The 2nd result corresponds to a point outside the triangle
2°) Generalization to a Simplex
-The 1st generalization concerns a regular tetrahedron ABCD and a point
M defined by the distances a = MA , b = MB , c = MC , d = MD
-What is the edge length x of the tetrahedron ?
-This may be solved in the same ways:
a) Using the coordinates of the 5 points leads to a
4x4 non-linear system.
b) We can also write that the sum of the volumes of the
4 tetrahedrons
MABC + MBCD
+ MACD + MABD = the volume of ABCD ( with Francesca's formula )
c) A 3rd approach is: Sum of the 4 trihedral angles
MABC + MBCD + MACD + MABD = 720°
-But the formula that was used in paragraph 1°) may be generalized to a regular tetrahedron:
4 ( a4 + b4 + c4 + d4 + x4 ) = ( a2 + b2 + c2 + c2 + x2 )2
-I first proved it with my HP-48 using a Cayley-Menger determinant
-Whence the conjecture: If A1 A2 ... AN is a regular simplex ( edge length = x ) and MA1 = a1 , MA2 = a2 , ........ , MAN = aN
N ( a14 + ........ + aN4 + x4 ) = ( a12 + ......... + aN2 + x2 )2 here N = number of points
-A general proof is given in paragraph 3°)
Data Registers: • R00 = N = Nb of points ( Registers R00 thru RNN are to be initialized before executing "WST" )
• R01 = a1
• R02 = a2 .....................
• RNN = aN
Flags: /
Subroutines: /
01 LBL "WST" 02 RCL 00 03 0 04 ENTER^ 05 LBL 01 06 RCL IND Z 07 X^2 |
08 ST+ Z 09 X^2 10 + 11 DSE Z 12 GTO 01 13 R^ 14 RCL 00 |
15 - 16 * 17 X<>Y 18 X^2 19 + 20 RCL 00 21 * |
22 SQRT 23 ST+ Z 24 - 25 RCL 00 26 1 27 - 28 ST/ Z |
29 / 30 SQRT 31 X<>Y 32 SQRT 33 END |
( 47 bytes / SIZE NNN+1 )
STACK | INPUTS | OUTPUTS |
Y | / | x' |
X | / | x |
Example1: Regular Tetrahedron with edge length
= x ; a = 56 , b = 59 , c = 69 , d = 79 ; calculate x
4 STO 00 56 STO 01 59 STO 02 69 STO 03 79 STO 04
XEQ "WST" >>>> x = 105
RDN x' = 26.85144316
Example2: Regular 4-Simplex with edge length = x ( N = 5 )
a1 = 138 , a2 = 142 , a3 = 158 , a4 = 160 , a5 = 178
5 STO 00 138 STO 01 142 STO 02 158 STO 03 160 STO 04 178 STO 05
XEQ "WST" >>>> x = 242
RDN x' = 46.51881340
Notes:
-Of course, "WST" may also be used to solve the triangle problem, with
N = 3
-Here, N is the number of points, not the dimension of the space: for a n-simplex,
N = n+1
-The example 2 was found by Gerson W. Barbosa:
-He wrote a program in turbo pascal3 to find - a lot of - integer solutions
of the problem
-If you choose the ai at random, x & x' will probably be not
integers !
3°) Demonstration for a n-simplex
a) Case n = 3
-This case is just given because the proof is easier to follow.
-Skip to the next paragraph otherwise.
-Let be ABCD a regular tetrahedron with all edge lengths = 1 and M(x,y,z) in the basis DA = i , DB = j , DC = k
-The dot products i.i = j.j = k.k = 1 and i.j = i.k = j.k = cos 60° = 1/2
-We have, for the coordinates of these 4 vectors DM(x,y,z) AM(x-1,y,z) BM(x,y-1,z) CM(x,y,z-1) whence:
d2 = (x.i + y.j + z.k)2 = x2 + y2 + z2 + x y + x z + y z and likewise
a2 = (x-1)2 + y2 +
z2 + (x-1) y + (x-1) z + y z
b2 = x2 + (y-1)2 + z2
+ x (y-1) + x z + (y-1) z
which may be re-written:
c2 = x2 + y2 + (z-1)2
+ x y + x (z-1) + y (z-1)
a2 = d2 - 2 x + 1 - y - z = d2
- x - s + 1
b2 = d2 - 2 y + 1 - x - z = d2
- y - s + 1
with s = x + y + z
c2 = d2 - 2 z + 1 - x - y = d2
- z - s + 1
-Adding these 3 relations + d2 + 1 on both sides yields:
a2 + b2 + c2 + d2 + 1 = 4 d2 + 4 - 4 s = 4 ( d2 + 1 - s ) and squaring gives
( a2 + b2 + c2 + d2 + 1 )2 = 16 ( d2 + 1 - s )2 = 16 ( d4 + 1 + s2 + 2 d2 - 2 d2 s - 2 s )
( a2 + b2 + c2
+ d2 + 1 )2 = 16 ( d4 + 1 + s2
+ 2 d2 - 2 d2 s - 2 s )
-Squaring the same 3 relations above:
a4 = ( d2 - x - s + 1 )2
= d4 + x2 + s2 + 1 + 2 d2
( 1 - x - s ) + 2 x s - 2 x - 2 s
b4 = ( d2 - y - s + 1 )2 =
d4 + y2 + s2 + 1 + 2 d2 ( 1 -
y - s ) + 2 y s - 2 y - 2 s
c4 = ( d2 - z - s + 1 )2 =
d4 + x2 + s2 + 1 + 2 d2 ( 1 -
z - s ) + 2 z s - 2 z - 2 s
-Adding these equalities + d4 + 1 on both sides:
a4 + b4 + c4 + d4
+ 1 = 4 d4 + 4 + ( x2 + y2 + z2
) + 3 s2 + 2 d2 ( 3 - 4 s ) + 2 s ( x + y + z ) - 8
s
a4 + b4 + c4 + d4
+ 1 = 4 d4 + 4 + ( x2 + y2 + z2
) + 3 s2 + 2 d2 ( 3 - 4 s ) + 2 s2 - 8 s
-But s2 = x2 + y2 + z2 + 2 x y + 2 x z + 2 y z so, ( x2 + y2 + z2 ) = 2 d2 - s2 whence:
a4 + b4 + c4 + d4
+ 1 = 4 d4 + 4 + 2 d2 - s2 + 3 s2
+ 2 d2 ( 3 - 4 s ) + 2 s2 - 8 s
= 4 d4 + 4 + 2 d2 + 4 s2 + 2 d2
( 3 - 4 s ) - 8 s
= 4 d4 + 4 + 8 d2 + 4 s2 - 8 d2
s - 8 s
= 4 ( d4 + 1 + 2 d2 + s2 - 2 d2
s - 2 s )
-Finally, 4 ( a4 + b4 + c4 + d4 + 1 ) = 16 ( d4 + 1 + 2 d2 + s2 - 2 d2 s - 2 s ) and
( a2 + b2 +
c2 + d2 + 1 )2 = 4 ( a4
+ b4 + c4 + d4 + 1 )
b) General Case
* An
L * .....
*
....
A0*
* * * *A2
*
*A1
-Without loss of generality, we can suppose that the edge lengths of the
regular tetrahedron A0A1 ................
An equal 1 ; L=1
( In other words, divide the equality by L4 )
-We choose the basis as ( e1 , ............. , en
) = ( A0A1 , ............... , A0An
)
-The norms of these n vectors = 1 , but the dot product ei.
ej = cos ( A0Ai , A0Aj
) = cos 60° = 1/2 if i # j
-Let a point M ( x1 , .............. , xn ) and
a0 = A0M , a1 = A1M , ...................... , an = AnM we have:
a02 = Sum xi2
+ Sumi<j xi xj
a12 = ( x1 - 1 )2
+ Sumi#1 xi2 + ( x1 - 1
) ( x2 + .... + xn ) + Sum1<i<j
xi xj
...................................................................................................................
an2 = Sumi#n xi2
+ ( xn - 1 )2 + Sumi<j<n
xi xj + ( x1 + .... + xn-1
) ( xn - 1 )
-In other words:
a12 = a02 - 2
x1 - x2 - .................... - xn + 1
= a02 - x1 - s + 1
(1)
a22 = a02 -
x1 - 2 x2 - .................... - xn +
1 = a02 - x2 - s + 1
(2)
................................................................................................. with s = x1 + .... + xn
an2 = a02 - x1 ................. - xn-1 - 2 xn + 1 = a02 - xn - s + 1 (n)
• Adding these n equalities and adding a02 + 1 on both sides yields:
a02 + a12 + ..... + an2 + 1 = ( n + 1 ) a02 + ( n + 1 ) - ( n + 1 ) s
-Dividing by ( n + 1 ) gives [ a02 + a12 + ..... + an2 + 1 ] / ( n + 1 ) = a02 + 1 - s and squaring this equality produces:
{ [ a02 + a12 + ..... + an2 + 1 ] / ( n + 1 ) }2 = ( a02 + 1 - s )2 = a04 + 2 a02 - 2 s a02 + 1 - 2 s + s2
• Squaring the same n equalities (1) (2) ..... (n) yields:
a14 = ( a02 -
x1 - s + 1 )2 = a04 + x12
+ s2 + 1 + 2 a02 ( 1 - s - x1
) + 2 s x1 - 2 x1 - 2 s
a24 = ( a02 - x2
- s + 1 )2 = a04 + x22
+ s2 + 1 + 2 a02 ( 1 - s - x2
) + 2 s x2 - 2 x2 - 2 s
.....................................................................................................................................
an4 = ( a02 - xn - s + 1 )2 = a04 + xn2 + s2 + 1 + 2 a02 ( 1 - s - xn ) + 2 s xn - 2 xn - 2 s
• Adding these n equalities and adding a04 + 1 on both sides yields:
a04 + a14 + ..... + an4 + 1 = ( n + 1 ) a04 + ( x12 + ........... + xn2 ) + n s2 + ( n + 1 ) + 2 a02 n - 2 a02 ( n + 1 ) s + 2 s2 - 2 ( n + 1 ) s
but x12 + ........... + xn2 = 2 a02 - s2
so, a04 + a14
+ ..... + an4 + 1 = ( n + 1 ) a04
+ 2 a02 - s2 + n s2 + (
n + 1 ) + 2 a02 n - 2 a02 ( n
+ 1 ) s + 2 s2 - 2 ( n + 1 ) s
= ( n + 1 ) a04 + 2 a02 ( 1 +
n ) - 2 a02 ( n + 1 ) s + ( n + 1 ) s2 -
2 ( n + 1 ) s + ( n + 1 )
-Dividing by ( n + 1 ) gives
[ a04 + a14 + ..... + an4 + 1 ] / ( n + 1 ) = a04 + 2 a02 - 2 s a02 + 1 - 2 s + s2
-So, [ a04 + a14 + ..... + an4 + 1 ] / ( n + 1 ) = { [ a02 + a12 + ..... + an2 + 1 ] / ( n + 1 ) }2
-Multiplying on both sides by ( n + 1 )2 proves the formula.
Q.E.D.
Converse proposition
-Assuming that the relation ( n + 1 ) ( a04
+ a14 + ..... + an4 + x4
) = ( a02 + a12 + .....
+ an2 + x2 )2 is satisfied
and that it does define a point, we have to check that this point
M is not outside the n-dimensional space of the n-simplex
-Let be H the orthogonal projection of M on the n-dimensional space of the simplex and let be h = HM, we have:
( n + 1 ) ( a04 + a14 + ..... + an4 + x4 ) = ( a02 + a12 + ..... + an2 + x2 )2 whence
( n + 1 ) [ ( a'02+h2 )2 + ( a'12+h2 )2 + ..... + ( a'n2+h2 )2 + x4 ] = ( a'02+h2 + a'12+h2 + ..... + a'n2+h2 + x2 )2 ( Pythagoras )
where a'0 = A0H , a'1 = A1H , .......... , a'n = AnH
-Expanding this equality yields:
( n+1) [ a'04 + a'14 + ..... + a'n4 + x4 + ( n+1 ) h4 + 2 h2 ( a'02 + a'12 + ..... + a'n2 ) ] = [ a'02 + a'12 + ..... + a'n2+ ( n+1 ) h2 + x2 ]2
( n+1) [ a'04 + a'14
+ ..... + a'n4 + x4 + ( n+1 ) h4
+ 2 h2 ( a'02 + a'12
+ ..... + a'n2 ) ]
= [ a'02 + a'12 + .....
+ a'n2 + x2 ]2 + 2 ( n + 1 )
h2 ( a'02 + a'12
+ ..... + a'n2 + x2 )
-Since H belong to the n-dimensional space of the simplex, we can apply the 1st part of the demonstration to H
-So, ( n+1) [ a'04 + a'14 + ..... + a'n4 + x4 ] = [ a'02 + a'12 + ..... + a'n2 + x2 ]2
and the remaining equation is the form C h4 + D h2 = 0 which has a unique solution: h = 0
-In other words, H = M and M belong to the n-dimensional
space of the simplex. Q.E.D.
References:
[1] "The King of Nought" - Diffusion Belin - ISBN 2-909737-06-3 (
in French and English )
[2] http://mathafou.free.fr/pbg/sol113.html