General Relativity and Cosmology for the HP-41
Overview
1°) The Classical Tests
a) Advance of Periastron
b) Light Deflection
c) Gravitational Red-shift
2°) Gravitational Radiation on circular orbits
3°) Cosmology
a) Friedmann Universes: Cosmological Constant = 0
a-1) Einstein-de Sitter model
q0 = 1/2 ( q = deceleration parameter
)
a-2) Spherical models q0
> 1/2
a-3) Hyperbolic models 0 <
q0 < 1/2
b) Empty Universes: L0 + q0 = 0
b-1) Milne model q0
= 0
b-2) de Sitter model q0
= -1
b-3) -1 < q0 < 0
b-4) q0 > 0
b-5) q0 < -1
c) Eddington-Lemaitre Universes ( critical parameters )
d) Euclidean Universes
d-1) -1 < q0 <
1/2
d-2) q0 >
1/2
e) More general models
e-1) Numerical Integration ( program#1 )
e-2) Numerical Integration ( program#2 )
e-3) Elliptic Integrals ( Big Bang Universes
only )
f) Non-vanishing Pressure
f-1) Pure Radiation
f-2) Radiation+Dust: Numerical Integration
f-3) Radiation+Dust: Elliptic Integrals
Astronomical Data:
Constant of gravitation = G = 6.67259 10-11 m3
kg-1 s-2
Heliocentric Gravitational Constant = 1.3271244 1020
m3 s-2
Geocentric Gravitational Constant = 3.986004356 1014
m3 s-2
Mass of the Sun = M = 1.98892 1030 kg
Mass of the Earth = m = 5.97370 1024 kg
Solar Radius = 696265 km
Earth Equatorial Radius = 6378137 m
Speed of light = c = 299792458 m/s
Astronomical Unit = 1AU = 149597870.6 km
1 Light-year = 9.4607304726 1015 m
1 Megaparsec = 1 Mpc = 3.085677581 1022 m
Stefan's Constant = a = 7.565656 10 -16 J.m3.K
-1
Temperature of the Cosmic Background = T = 2.736 K
Hubble Constant = H0 ~ 71 km/s/Mpc ~ 2.301 10-18
s
-In the following programs, I've choosen 1/H0 = 13.7 109 years which corresponds to H0 = 71.37169499 km/s/Mpc = 2.312999111 10-18 second
-These numbers are linked by the relation: ( 1/H0
) ( years ) = 977.79222143 109 / H0 ( km/s/Mpc
)
-These decimals are only given to facilitate comparisons: Hubble Constant
is known very inaccurately!
-The mean density of matter is of the order of ( rho )mat
~ 3 10 -28 kg/m3 , perhaps 10 or 100
times more!
( possible dark matter , non-baryonic or exotic matter ... )
-Some of these programs use synthetic registers M , N , O , P , Q
which may of course be replaced by any unused data registers.
-Integrals are denoted §
1°) The Classical Tests
a) Relativistic
Advance of Periastron
-We assume a celestial body of mass M creates a spherically symmetric
gravitational field.
-In this case, the metric has the following expression:
ds2 = (1-2GM/(c2.r)) c2.dt2 - dr2/(1-2GM/(c2.r)) - r2(d(theta)2 + sin2(theta) d(phi)2 ) Schwarzschild metric
( r , theta , phi = spherical coordinates )
-Provided the gravitational field is not too strong, the orbit of a planet
is a slowly rotating ellipse.
-The 3 following short routines use the formulae:
Advance of periastron = 6.PI.GM/(a.c2(1-e2))
radians per revolution
Third Kepler's law: a3/T2
= GM/(4.PI2)
where M = Mass of the system , T =
orbital period , a = semimajor axis , e = eccentricity.
01 LBL "MTE" 02 X^2 03 SIGN 04 LASTX 05 - 06 .198956 07 X<>Y 08 / 09 RDN 10 ST/ T 11 / 12 X^2 13 3 14 1/X 15 Y^X 16 R^ 17 * 18 END |
( 33 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Z | M | / |
Y | T | M |
X | e | adv(p) |
M = Mass ( expressed in Solar
Masses )
T = Orbital Revolution
( in days )
e = eccentricity
adv(p) = the advance of periastron in degrees per year
Example1: The binary Pulsar PSR J0737-3039 has the following characteristics:
m1 = 1.25 Solar Mass ;
m2 = 1.34 Solar Mass whence M
= m1 + m2 = 2.59
T = 2.45 hours
e = 0.09
2.59 ENTER^
2.45 ENTER^ 24 /
0.09 XEQ "MTE" >>>>
adv(p) = 16.97 deg/year
Example2: Mercury M = Mass of the Sun = 1 , T = 87.969 days , e = 0.2056
1
ENTER^
87.969 ENTER^
0.2056 R/S
>>>> 0.00011939 deg/year.
Multiplying this value by 36 E4 it yields: 42.98
arcseconds/century
-The advance of perihelion for Mercury is the first classical test of
general relativity.
-Of course, Newtonian perturbations caused by other planets are to be
added to this relativistic effect.
-This routine assumes the correction is small.
-If M is expressed in kg and T in seconds, replace line 06
with 2.124235 E-13
-Similar programs may be written if we know a , T , e instead
of M , T , e:
01 LBL "ATE" 02 X^2 03 SIGN 04 LASTX 05 - 06 519.464 07 X<>Y 08 / 09 ST* Z 10 CLX 11 3 12 Y^X 13 / 14 * 15 END |
( 30 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Z | a | a |
Y | T | a |
X | e | adv(p) |
a = Semimajor axis ( in Astronomical
Units )
If a is expressed in meters and T in seconds,
T = Orbital Revolution ( in days
)
replace line 06 by 1.497084 E-5
e = eccentricity
-And if we know M , a , e:
01 LBL "MAE" 02 X^2 03 SIGN 04 LASTX 05 - 06 93808 07 * 08 RCL Y 09 X^2 10 * 11 ST/ T 12 RDN 13 / 14 SQRT 15 * 16 END |
( 30 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Z | M | / |
Y | a | / |
X | e | adv(p) |
M = Mass ( expressed in Solar Masses )
If M is expressed in kilograms and a in meters
T = Orbital Revolution ( in days
)
replace line 06 with 3.039848 E22
e = eccentricity
b) Light
Deflection
-If a photon passes at a distance d of a celestial body of mass M,
its trajectory is deflected by an angle LD = 4.GM/(c2d)
radians.
-The (very ) short following routine computes LD in seconds of arc.
01 LBL "LD" 02 / 03 1.7498 04 * 05 END |
( 17 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Y | M | / |
X | d | LD( " ) |
where M is expressed in Solar Masses
and d is expressed in Solar radii.
Example: with M = 1 for the Sun and d = 1 it yields of course 1.75"
-This effect of light deflection was first observed at the Solar eclipse
of 1919.
-If M is expressed in kg and d is expressed in meters, replace line 03
by 6.1255 E-22
-This program is only valid for small deflections.
-Assuming spherical symmetry, the exact differential equation is:
d2u/d(phi)2 + u = 3.GM/c2 u2 where u = 1/r and ( r, phi ) = polar coordinates.
-A "funny" solution is r = Constant = 3.GM/c2 = 1.5
* Schwarzschild radius
-Thus, a photon may have a circular trajectory !
c) Gravitational
Red-Shift
-We suppose the source and the observer are static in a spherically symmetric
gravitational field created by a celestial body of mass M.
-In this case, z = d(lambda)/lambda = ((1-2GM/c2/rO)/(1-2GM/c2/rS))1/2
- 1 ( r = distance from the origin )
01 LBL "GRZ" 02 4.2416 E-6 03 R^ 04 * 05 CHS 06 ENTER^ 07 R^ 08 / 09 X<> Z 10 / 11 RCL X 12 RCL Z 13 - 14 X<> Z 15 1 16 ST+ Z 17 + 18 ST* Y 19 X<>Y 20 SQRT 21 + 22 / 23 END |
( 45 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Z | M | a |
Y | rS | a |
X | rO | adv(p) |
M = Mass of the
gravitational body
( in Solar mass )
rS = distance source-gravitational
body ( in Solar radius )
rO = distance observer-gravitational
body ( in Solar radius )
Example: M = 2 , rS = 3 , rO = 4
2 ENTER^
3 ENTER^
4 XEQ "GRZ" >>>>
z = 3.5347 10-7
-If M is expressed in kg and rS , rO
are in meters, replace line 02 by 14849 E-31
-When M = mass of the Earth, rO = radius of the Earth and rO-rS
= 22.496 m, it yields z ~ 2.46 10-15
-This very small effect has been measured and confirmed by Pound &
Rebka in 1960
-If both GM/(c2r) are small ( GM/(c2r) <<
1 ) we can use a much shorter routine:
-Replace line 08 by 74243 E-32 if M is expressed
in kg and r in meter
01 LBL "GRZ2" 02 1/X 03 CHS 04 X<>Y 05 1/X 06 + 07 * 08 2.1208 E-6 09 * 10 END |
2°) Gravitational Radiation on Circular Orbits
-We now assume that 2 celestial bodies move on cicular orbits around their
common center of gravity.
-Because of gravitational radiation, the system loses a small energy,
and their trajectories are actually spirals.
-The distance r between these 2 masses ( m1 & m2
) is slowly decreasing according to the differential equation:
dr/dt = -64G3 m1.m2 ( m1 + m2 ) / ( 5.c5.r3 )
-If r = r0 at an instant t = 0 the
following program calculates at what time T we'll have r = r1
( r1 < r0 )
01 LBL "SPI" 02 X^2 03 X^2 04 X<>Y 05 X^2 06 X^2 07 - 08 ABS 09 RDN 10 ST* Z 11 + 12 * 13 / 14 32114 E13 15 * 16 END |
( 32 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | m1 | m1 |
Z | m2 | m1 |
Y | r0 | m1 |
X | r1 | T |
where mi are expressed in Solar Masses and
rj are expressed in Astronomical Units
>>> The result T is expressed in years
Example: Let's take once again the binary pulsar PSR J0737-3039 m1 = 1.25 , m2 = 1.34 ( we neglect the small eccentricity )
-Currently, r is approximately 0.00586 AU
-Find in how many time we'll have r = 0.001 AU
1.25 ENTER^
1.34 ENTER^
0.00586 ENTER^
0.001 XEQ "SPI"
>>>> 87 Million years
-The coalescence time is estimated 85 Million years ( it's the shortest
currently known ).
-If mi are in kg and rj are in meters, replace
line 14 with 1.592026 E71
3°) Cosmology
-Einstein's equations Sij - (1/2) gij
( S + 2.Lambda ) = ( 8.PI.G/c4 ) Tij
are now applied to a homogeneous and isotropic Universe.
( Sij is the tensor of curvature ,
S = SijSij , Lambda is the cosmological constant and
Tij describes the content of the Universe )
-This "cosmological principle" leads to the Robertson-Walker metric:
ds2 = c2dt2 - R2(t)/(1-kr2/4)2 . ( dr2 + r2d(theta)2 + r2sin2(theta)d(phi)2 )
r , theta , phi are the comoving
spherical coordinates
R(t) is the scale factor = the "radius" of the Universe
k = +1 for Spherical Universes
k = 0 for Euclidean
---------
k = -1 for Hyperbolic ---------
-Usually, Tij = ( (rho).c2 + p ) uiuj
- p gij ( gij is
the metric tensor ; rho = density of matter and energy ; p = pressure ;
ui = dxi/ds = 4-velocity )
and Einstein's equations yield:
2 R(t).d2R/dt2 + (dR/dt)2 +
k.c2 = ( -(8.PI.G/c2 ).p + (Lambda).c2 ).R2(t)
(dR/dt)2 + k.c2
= ( (8.PI.G/3) (rho) + (Lambda/3).c2 ).R2(t)
_________________________________________________________________________________________________________________________
-If R(t) is constant and p = 0, this system leads to Einstein's static model: k = +1 , R = RE = c.(4.PI.G.(rho))-1/2 ; Lambda = 4.PI.G.(rho)/c2 = 1/R2
With rho = 5 10 -28 kg/m3
it yields R = 4.63 1026 m ~ 15 Gpc ,
Lambda = 4.665 10 -54 m-2
Einstein's Universe is a 3-sphere and its volume is
2.PI2.R3 = 1.959 1081 m3
~ 66700 Gpc3
Its mass is M = 9.796 1053 kg
_________________________________________________________________________________________________________________________
-To simplify the equations when R is not constant, we now assume p = 0 ( vanishing pressure ) and we use the following parameters:
H = (1/R).dR/dt
= Hubble constant
q
= -R.(d2R/dt2)/(dR/dt)2 =
deceleration parameter
(Omega)mat = 8.PI.G.(rho)/(3H2) =
density parameter
(Omega)vac = (Lambda.c2)/(3H2)
= L
-The equations reduce to:
2.q + 2.L = 8.PI.G.(rho)/(3H2)
2.q + 3.L - 1 = k.c2/(H2R2)
and lead to the integral H0.t = § [ ( 2q0+2.L0 )/y + ( 1-2q0-3L0 ) + L0.y2 ] -1/2 dy
where y = R/R0 , the subscript 0 meaning a current value
-Knowing the cosmological redshift z of a galaxy, and the values of the
current parameters q0 , L0
the following programs computes several "distances", the recessional
velocity and the age of the Universe.
D
= light-travel time distance ( in light-years ) = light-travel time
( in years )
D0 = comoving distance ( in light-years )
DL = luminosity-distance ( in light-years )
VR = recessional velocity ( speed of light = 1 )
t0 = age of the Universe ( in years )
D = (c/H0) §y(em)1
[ ( 2q0+2.L0 )/y + ( 1-2q0-3L0
) + L0.y2 ] -1/2 dy
y(em) = y at the instant of emission z + 1 = R0/R
= 1/yem
D0 = (c/H0) §y(em)1
[ ( 2q0+2.L0 ).y + ( 1-2q0-3L0
).y2 + L0.y4 ] -1/2 dy
D0 = Dnow
F(x) = Sinh(x) if k = -1
DL = R0 ( z + 1 ) F(D0/R0)
where F(x) = x
if k = 0
F(x) = Sin(x) if k = +1
VR = H0.D0
t0 = (1/H0)
§01 [ ( 2q0+2.L0
)/y + ( 1-2q0-3L0 ) + L0.y2 ]
-1/2 dy
-We also have k = sign( 2q0+3L0-1 ) and R0 = (c/H0) k.( 2q0+3L0-1 ) -1/2 R0 may be choosen arbitrarily ( positive ) if k = 0
-Since z + 1 = R0/R = 1/y , these programs may also be
used to draw the graph of the function R(t)
z > 0 for the past , -1 < z <
0 for the future.
-Here is a summary of the different models:
********************************* MANY UNIVERSES***************************************
-According to the values of q and L, the different kinds of Universes
may be represented as follows:
V Hyp E
Sph q
C1
*
e
| c
*
e Dom2 |
c
*
e
| c
* Dom1e
| c
* e
| c
* e 1|
c
* e |c
Dom4
* eA(0;1/2)
A = Einstein-de Sitter model
* | e
------------------------O|D3e---------------------------------------
L
| * e 1
2
| * e
| * e
-1 |
cB(1;-1)
B = de Sitter model
|
* c
|
* c
|
* c
-2 |
* c
|
* Dom5 c
|
*
C2
W
-Line (VW): q + L = 0
represents empty Universes. On the left of this line, the density of matter
is negative: q + L < 0
-Line (BE): 2q + 3L -1 = 0 represents Euclidean Universes.
On the left of this line, Universes are hyperbolic. On the right, they
are spherical.
-Domains1&2: VOAE & EAC1 there is a Big Bang and a Big Crunch
R(t)
|
*
| *
*
| *
*
--------|*------------------------------*---------
t
O
-Domains3&4: OAB & C1ABC2
there is a Big Bang and no Big Crunch. R(t) has a point of inflexion and
R(t) tends to infinity as t tends to infinty
Our Universe seems to be inside triangle OAB, near the midpoint of [OB]
R(t)
|
*
|
*
|
*
|
*
| *
| *
------|*---------------------------------------------
t
O
-Domain5: WBC2 there is no Big Bang and no Big Crunch. R(t) has a positive minimum ( bounce models )
R(t)
|
| *
*
| *
*
| *
*
| *
*
|
*
------|-----------------------------------
t
O
-Critical parameters:
-Lines )AcccC1) and )BcccC2) represent
"critical" cosmological constants. On theses lines, we have: ( 3L+2q-1)3
= 27 L(q+L)2
-The straight-line R = RE is an asymptote of the curve
R = R(t) in both cases:
R(t)
|
*
|
*
Einstein-Lemaitre models: Line )BC2)
There is no Big Bang and R(t) = RE for t =
- infinity
|
*
|
*
|*
|----------------------------------------------------------------------------
Einstein's model R(t) = RE = constant
|
*
|
*
| *
| *
Einstein-Eddington models: Line )AC1)
There is a Big Bang and R(t) = RE for t = + infinity
------|*--------------------------------------------------------------------------
t
_________________________________________________________________________________________________________________________
a) Friedmann Universes: No Cosmological Constant , L0 = 0
a-1) Einstein-de Sitter Model: q0 = 1/2 ; L0 = 0
-This is an Euclidean Universe: 2q0 + 3L0 - 1 = 0 whence k = 0
Formulae:
D = (c/H0).(2/3).( 1 - (1 + z )-3/2
)
D0 = 2(c/H0).( 1 - (1 + z )-1/2
)
DL = D0 ( 1 + z )
R(t) = (3H0t/2)2/3 if we choose
R0 = 1
VR = H0 D0
t0 = (2/3)H0
01 LBL "EdS" 02 1 03 + 04 ENTER^ 05 ENTER^ 06 SQRT |
07 1/X 08 CHS 09 ENTER^ 10 R^ 11 / 12 1 |
13 ST+ Z 14 + 15 STO M 16 RDN 17 STO Z 18 ST+ Z |
19 ST* Y 20 137 E8 21 ST+ X 22 ST* M 23 ST* Z 24 * |
25 3 26 ST/ M 27 ST/ L 28 CLX 29 X<> M 30 END |
( 53 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | / | D0 |
X | z | D |
L | / | t0 |
Example: z = 7
7 XEQ "EdS" >>>> D
= 8.730 109 ly
RDN D0 = 17.713 109 ly
RDN DL = 141.701 109 ly
RDN VR = 1.2929
LASTX t0 = 9.133 109 years
a-2)
Spherical Models: q0 > 1/2 ; L0
= 0
-Here, k = +1
Formulae:
D = (c/H0/(2q0-1)).[ -1 + (2q0z+1)1/2/(z+1)
- (q0/(2q0-1)1/2) ( Arccos ((2q0-1)/q0-1)
- Arccos ((2q0-1)/(q0(z+1)) -1) ]
D0 = (c/H0/(2q0-1)1/2).[
- Arccos ((2q0-1)/q0-1) + Arccos ((2q0-1)/(q0(z+1))
-1) ]
DL = R0 ( 1 + z ) Sin D0/R0
R0 = c/H0/(2q0-1)1/2
VR = H0 D0
t0 = (1/H0/(2q0-1))
[ -1 - (q0/(2q0-1)1/2) ( Arccos ((2q0-1)/q0-1)
- PI ]
-The period of these Universes ( time between a Big Bang and a Big Crunch
) is T = (1/H0)(2.pi.q0).(2q0-1)
-3/2
01 LBL "FRSPH" 02 DEG 03 1 04 + 05 STO M 06 X<>Y 07 ENTER^ 08 STO P 09 ST+ X 10 LASTX 11 - 12 STO N 13 X<>Y 14 / 15 ENTER^ |
16 ENTER^ 17 SIGN 18 - 19 ACOS 20 CHS 21 STO T 22 X<> Z 23 / 24 PI 25 R-D 26 ST+ T 27 SIGN 28 - 29 ACOS 30 + |
31 STO O
32 RCL P 33 RCL N 34 SQRT 35 / 36 D-R 37 ST* Z 38 * 39 RCL M 40 RCL P 41 ST+ X 42 ST* Y 43 - 44 1 45 ST- T |
46 + 47 SQRT 48 RCL M 49 ST- Y 50 / 51 + 52 X<> M 53 RCL O 54 SIN 55 * 56 RCL N 57 ST/ M 58 ST/ Z 59 SQRT 60 ST/ Y |
61 R-D 62 ST/ O 63 X<> Z 64 SIGN 65 X<> O 66 STO Z 67 137 E8 68 ST* L 69 ST* M 70 ST* Y 71 ST* Z 72 X<> M 73 CLA 74 END |
( 121 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: q0 = 2
; z = 3
2 ENTER^
3 XEQ "FRSPH" >>>> D
= 5.871 109 ly
RDN D0 = 9.482 109 ly
RDN DL = 29.474 109 ly
RDN VR = 0.6921
LASTX t0 = 6.477 109 years
Note:
-For q0 = 0.50001 the results are still
approximately correct ( almost those of Einstein-de Sitter model )
but with q0 = 0.500001 , D and t0
are wrong! ( due to roundoff errors )
a-3)
Hyperbolic Models: 0 < q0 < 1/2 ; L0
= 0
-Here, k = -1
Formulae:
D = (c/H0/(1-2q0)).[ 1 - (2q0z+1)1/2/(z+1)
- (q0/(1-2q0)1/2) ( Arccosh ((1-q0)/q0)
- Arccos ((1-2q0)/(q0(z+1)) +1) ]
D0 = (c/H0/(1-2q0)1/2).[
Arccosh ((1-q0)/q0) - Arccosh ((1-2q0)/(q0(z+1))
+1) ]
DL = R0 ( 1 + z ) Sinh D0/R0
R0 = c/H0/(1-2q0)1/2
VR = H0 D0
t0 = (1/H0/(1-2q0))
[ 1 - (q0/(1-2q0)1/2) Arccosh ((1-q0)/q0)
]
01 LBL "FRHYP" 02 1 03 + 04 STO M 05 X<>Y 06 ENTER^ 07 STO P 08 ST+ X 09 SIGN 10 LASTX 11 - 12 STO N 13 X<>Y 14 / 15 ENTER^ 16 ENTER^ 17 X^2 |
18 LASTX
19 ST+ X 20 + 21 SQRT 22 + 23 LN1+X 24 X<>Y 25 RCL M 26 / 27 ENTER^ 28 X^2 29 LASTX 30 ST+ X 31 + 32 SQRT 33 + 34 LN1+X |
35 - 36 STO O 37 RCL P 38 RCL N 39 SQRT 40 / 41 CHS 42 ST* Z 43 * 44 RCL M 45 RCL P 46 ST+ X 47 ST* Y 48 - 49 1 50 ST+ T 51 + |
52 SQRT 53 RCL M 54 ST- Y 55 / 56 - 57 X<> M 58 RCL O 59 E^X 60 ENTER^ 61 1/X 62 - 63 * 64 2 65 / 66 RCL N 67 ST/ M 68 ST/ Z |
69 SQRT 70 ST/ Y 71 ST/ O 72 X<> Z 73 SIGN 74 X<> O 75 STO Z 76 137 E8 77 ST* L 78 ST* M 79 ST* Y 80 ST* Z 81 X<> M 82 CLA 83 END |
( 130 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: q0 = 0.4
; z = 7
0.4 ENTER^
7 XEQ "FRHYP" >>>> D
= 9.087 109 ly
RDN D0 = 18.708 109 ly
RDN DL = 159.140 109 ly
RDN VR = 1.3655
LASTX t0 = 9.534 109 years
b) Empty
Universes: q0 + L0 = 0
b-1)
Milne Model: q0 = 0
k = -1 ( hyperbolic geometry )
Formulae:
D = (c/H0).z/(z+1)
D0 = (c/H0).Ln(z+1)
DL = R0 z(z+2)/2
R0 = c/H0
R(t) = c.t
VR = H0 D0
t0 = 1/H0
01 LBL "MLN" 02 ENTER^ 03 STO M 04 1 05 + 06 ST/ M 07 LN 08 X<>Y 09 1 10 LASTX 11 + 12 * 13 2 14 / 15 X<>Y 16 137 E8 17 ST* M 18 ST* Z 19 * 20 0 21 X<> M 22 END |
( 39 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | / | D0 |
X | z | D |
L | / | t0 |
Example: z = 7
7 XEQ "MLN" >>>> D
= 11.988 109 ly
RDN D0 = 28.488 109 ly
RDN DL = 431.550 109 ly
RDN VR = 2.0794
LASTX t0 = 13.700 109 years
b-2)
de Sitter Model: q0 = -1
k = 0 ( Euclidean geometry )
Formulae:
D = (c/H0).Ln(z+1)
D0 = (c/H0).z
DL = (c/H0).z(z+1)
VR = H0 D0
t0 = infinity
R(t) = exp(H0.t) the mimimum =
0 when t = minus infinity
01 LBL "dST" 02 ENTER^ 03 STO Z 04 1 05 + 06 ST* Z 07 LN 08 STO M 09 CLX 10 137 E8 11 ST* M 12 ST* Z 13 * 14 DEG 15 90 16 TAN 17 SIGN 18 CLX 19 X<> M 20 END |
( 39 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | / | D0 |
X | z | D |
L | / | t0 |
Example: z = 7
7 XEQ "dST" >>>> D
= 28.488 109 ly
RDN D0 = 95.900 109 ly
RDN DL = 767.200 109 ly
RDN VR = 7.0000
LASTX t0 = 9.9999 1099 years
= infinity
b-3)
-1 < q0 < 0
-Recent observations suggest that q0 is of the order of -1/2
Formulae: k = -1 ( hyperbolic geometry )
D = (c/H0/(-q0)1/2).
[ Arcsinh (1/b) - Arcsinh (1/b/(z+1)) ] where
b = ((1+q0)/(-q0))1/2
D0 = (c/H0/(1+q0)1/2).
Ln ( ( 1/b2 + (z+1)2 )1/2 + z+1 )/((1/b2+1)1/2+1
)
DL = R0 ( 1 + z ) Sinh D0/R0
R0 = c/H0/(1+q0)1/2
R(t) = R0.b Sinh ( H0.t.(-q0)1/2
)
VR = H0 D0
t0 = 1/H0/(-q0)1/2
Arcsinh 1/b
01 LBL "VAC" 02 1 03 + 04 STO M 05 X<>Y 06 ENTER^ 07 CHS 08 STO N 09 LASTX 10 - 11 / 12 STO O 13 SQRT 14 LASTX 15 1 |
16 STO Q 17 + 18 SQRT 19 ST+ Q 20 + 21 ENTER^ 22 R^ 23 ST* Y 24 X^2 25 RCL O 26 + 27 SQRT 28 STO P 29 RCL O 30 SQRT |
31 + 32 / 33 LN 34 X<> M 35 ENTER^ 36 X<> P 37 + 38 RCL Q 39 / 40 LN 41 STO O 42 X<> L 43 ENTER^ 44 1/X 45 - |
46 RCL P 47 * 48 2 49 / 50 X<>Y 51 LN 52 RCL N 53 SQRT 54 ST/ M 55 / 56 1 57 RCL N 58 - 59 SQRT 60 ST/ O |
61 ST/ Z 62 RDN 63 SIGN 64 X<> O 65 STO Z 66 137 E8 67 ST* L 68 ST* M 69 ST* Y 70 ST* Z 71 X<> M 72 CLA 73 END |
( 112 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: q0 = -0.3
; z = 7
-0.3 ENTER^
7 XEQ "VAC" >>>>
D = 13.341 109 ly
RDN D0 = 32.552 109 ly
RDN DL = 469.215 109 ly
RDN VR = 2.3761
LASTX t0 = 15.386 109 years
-We can save several bytes if we don't use status registers M, N, O ....:
01 LBL "VAC" 02 1 03 STO 00 04 STO 06 05 + 06 STO 01 07 STO 04 08 X<>Y 09 ENTER 10 ST+ 06 11 CHS 12 STO 02 13 LASTX 14 - |
15 / 16 STO 03 17 SQRT 18 STO 05 19 LASTX 20 RCL 00 21 + 22 SQRT 23 ST+ 00 24 + 25 ENTER 26 R^ 27 ST* Y 28 X^2 |
29 RCL 03 30 + 31 SQRT 32 ST+ 04 33 RCL 05 34 + 35 / 36 LN 37 X<> 04 38 RCL 00 39 / 40 LN 41 LASTX 42 ENTER |
43 1/X 44 - 45 RCL 01 46 * 47 2 48 / 49 R^ 50 LN 51 RCL 02 52 SQRT 53 ST/ 04 54 / 55 RCL 06 56 SQRT |
57 ST/ Z 58 ST/ T 59 RDN 60 SIGN 61 CLX 62 RCL Z 63 137 E8 64 ST* L 65 ST* 04 66 ST* Y 67 ST* Z 68 X<> 04 69 END |
( 95 bytes / SIZE 007 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: q0 = -0.3
; z = 7
-0.3 ENTER^
7 XEQ "VAC" >>>>
D = 13.341 109 ly
RDN D0 = 32.552 109 ly
RDN DL = 469.215 109 ly
RDN VR = 2.3761
LASTX t0 = 15.386 109 years
-0.3 ENTER^
7 XEQ "VAC" >>>> D = 13.41113179 Gly
RDN D0 = 32.72273316 Gly
RDN DL = 471.6710452 Gly
RDN VR = 2.376081547
LASTX t0 = 15.46638674 Gy
b-4)
q0 > 0
k = -1 ( hyperbolic geometry )
Formulae:
D = (c/H0/q01/2).
[ Arcsin (1/b) - Arcsin (1/b/(z+1)) ] where
b = ((1+q0)/q0)1/2
D0 = (c/H0/(1+q0)1/2).
Ln ( ( ( -1/b2 + (z+1)2 )1/2 + z+1 )/((-1/b2+1)1/2+1
)
DL = R0 ( 1 + z ) Sinh D0/R0
R0 = c/H0/(1+q0)1/2
R(t) = R0.b Sin ( H0.t.q01/2
)
VR = H0 D0
t0 = 1/H0/q01/2
Arcsin 1/b
01 LBL "VAC2" 02 DEG 03 1 04 + 05 X<>Y 06 ENTER^ 07 STO N 08 LASTX 09 + 10 / 11 STO M 12 CHS 13 X<>Y 14 X^2 |
15 + 16 SQRT 17 + 18 1 19 RCL M 20 - 21 SQRT 22 1 23 + 24 / 25 LN 26 STO O 27 X<> L 28 ENTER^ |
29 1/X 30 - 31 * 32 2 33 / 34 RCL M 35 SQRT 36 ST/ Z 37 ASIN 38 ENTER^ 39 R^ 40 1/X 41 ASIN 42 - |
43 D-R 44 STO M 45 RDN 46 D-R 47 RCL N 48 SQRT 49 ST/ M 50 / 51 1 52 RCL N 53 + 54 SQRT 55 ST/ O 56 ST/ Z |
57 RDN 58 SIGN 59 X<> O 60 STO Z 61 137 E8 62 ST* L 63 ST* M 64 ST* Y 65 ST* Z 66 X<> M 67 CLA 68 END |
( 101 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: q0 =
0.3 ; z = 7
0.3 ENTER^
7 XEQ "VAC2" >>>>
D = 11.031 109 ly
RDN D0 = 25.737 109 ly
RDN DL = 403.673 109 ly
RDN VR = 1.8786
LASTX t0 = 12.534 109 years
b-5)
q0 < -1
k = +1 ( spherical geometry )
Formulae:
D = (c/H0/(-q0)1/2).
[ Arccosh (1/b) - Arccosh (1/b/(z+1)) ] where
b = ((1+q0)/q0)1/2
D0 = (c/H0/(-1-q0)1/2).
[ Arccos b - Arccos b(z+1) ]
DL = R0 ( 1 + z ) Sin D0/R0
R0 = c/H0/(-1-q0)1/2
R(t) = R0.b Cosh ( H0.t.(-q0)1/2
) Rmin = R0.b
VR = H0 D0
t0 = 1/H0/(-q0)1/2
Arccosh 1/b = the time since the minimum of the scale factor
01 LBL "VAC3" 02 DEG 03 1 04 + 05 STO M 06 X<>Y 07 CHS 08 ENTER^ 09 STO N 10 LASTX 11 - 12 / 13 STO O 14 SQRT 15 LASTX |
16 1 17 - 18 SQRT 19 + 20 ENTER^ 21 R^ 22 ST* Y 23 X^2 24 CHS 25 RCL O 26 + 27 SQRT 28 RCL O 29 SQRT 30 + |
31 / 32 LN 33 X<> M 34 STO Z 35 RCL O 36 SQRT 37 1/X 38 ST* Y 39 ACOS 40 X<>Y 41 ACOS 42 - 43 STO O 44 SIN 45 R^ |
46 * 47 X<>Y 48 LN 49 RCL N 50 SQRT 51 ST/ M 52 / 53 RCL N 54 1 55 - 56 SQRT 57 ST/ Z 58 R-D 59 ST/ O 60 RDN |
61 SIGN 62 X<> O 63 STO Z 64 137 E8 65 ST* L 66 ST* M 67 ST* Y 68 ST* Z 69 X<> M 70 CLA 71 END |
( 107 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example: q0 =
-1.1 ; z = 2
-1.1 ENTER^
2 XEQ "VAC3" >>>>
D = 18.458 109 ly
RDN D0 = 35.699 109 ly
RDN DL = 95.381 109 ly
RDN VR = 2.6057
LASTX t0 = 24.408 109 years
*** In these models, there is no Big Bang:
t0 = the time since the minimum of the scale factor
R(t)
The age of the Universe is actually infinite.
Notes:
-In these Universes, z cannot exceed a maximum redshift: zmax
= (q0/(q0+1))1/2 - 1
-With q0 = -1.1 , zmax
= 2.3166
-In fact, there are 2 distances for a given redshift ( one during the
contracting phase and another one during the expanding phase )
-This program only gives the distance corresponding to the expanding phase.
c) Eddington-Lemaitre
Universes ( Critical parameters )
-Here, ( 3L0+2q0-1)3 = 27 L0(q0+L0)2 and L0 is found by: 6.L0 = ( q0 + 1 )2 - 6.( q0 + 1 ) + 6 + [ ( q0 + 1 )4 -(4/3).( q0 + 1 )3 ]1/2
Formulae: with a = (1/2).(1+q0/L0) -1/3
H0.D/c = (1/(2a)) sign(-q0).[2a(q0+L0)]
-1/2 { 3-1/2 Ln [ ( (z+1+a)1/2+(3a)1/2
).( (1+a)1/2-(3a)1/2 )/( (z+1+a)1/2-(3a)1/2
)/( (1+a)1/2+(3a)1/2 ) ]
+ Ln [ ( (z+1+a)1/2-a1/2 ).( (1+a)1/2+a1/2
)2/( (z+1+a)1/2+a1/2 ) ] }
H0.D0/c = sign(-q0).[2a(q0+L0)] -1/2 3-1/2 Ln [ ( (z+1+a)1/2+(3a)1/2 ).( (1+a)1/2-(3a)1/2 )/( (z+1+a)1/2-(3a)1/2 )/( (1+a)1/2+(3a)1/2 ) ]
H0.t0 = (1/(2a)) [2a(q0+L0)]
-1/2 { 3-1/2 Ln [ ( (1+a)1/2+(3a)1/2
)/( (1+a)1/2-(3a)1/2 ) ] - Ln ( (1+a)1/2+a1/2
)2 } if q0 > 1/2
t0 = infinity if
q0 < -1
-All these Universes are spherical ( k = +1 )
Data Registers: /
Flag: F10
Subroutines: /
-Line 29: here, X-register = L0
Add STO 00 after this line if you want to save this number.
-Line 40: here, X-register = a
Add STO 01 after this line if you want to save this value.
01 LBL "LEM" 02 DEG 03 CF 10 04 1 05 + 06 STO M 07 X<>Y 08 X>0? 09 SF 10 10 STO N 11 LASTX 12 + 13 STO Y 14 4 15 3 16 / 17 - 18 * 19 * 20 * 21 SQRT 22 X<> Z 23 6 24 - 25 * 26 + 27 6 28 ST+ Y 29 / 30 STO P |
31 RCL N 32 X<>Y 33 ST+ Y 34 / 35 PI 36 INT 37 1/X 38 Y^X 39 ST+ X 40 1/X 41 STO Q 42 RCL M 43 + 44 SQRT 45 STO Y 46 RCL Q 47 PI 48 INT 49 * 50 SQRT 51 STO O 52 ST+ Z 53 - 54 ST/ Y 55 CLX 56 SIGN 57 RCL Q 58 + 59 SQRT 60 RCL X |
61 RCL O 62 ST+ Z 63 - 64 / 65 ST/ Y 66 X>0? 67 LN 68 STO O 69 X<>Y 70 LN 71 FS? 10 72 CHS 73 PI 74 INT 75 SQRT 76 ST/ O 77 / 78 RCL M 79 RCL Q 80 + 81 SQRT 82 RCL X 83 RCL Q 84 SQRT 85 ST- Z 86 + 87 / 88 RCL Q 89 ENTER^ 90 SIGN |
91 + 92 SQRT 93 RCL Q 94 SQRT 95 + 96 X^2 97 LN 98 ST- O 99 X<> L 100 * 101 LN 102 FS? 10 103 CHS 104 + 105 RCL N 106 RCL P 107 + 108 RCL Q 109 ST+ X 110 ST/ O 111 ST/ Z 112 * 113 SQRT 114 ST/ O 115 ST/ Z 116 / 117 RCL P 118 3 119 * 120 RCL N |
121 ST+ X 122 + 123 1 124 - 125 SQRT 126 ST/ M 127 R^ 128 * 129 R-D 130 SIN 131 ST* M 132 CLX 133 137 E8 134 ST* M 135 ST* O 136 ST* Y 137 ST* Z 138 CLX 139 90 140 TAN 141 FS?C 10 142 X<> O 143 SIGN 144 X<> M 145 X<> Z 146 X<>Y 147 CLA 148 END |
( 219 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | / | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
with q0 > 1/2 ( Eddington
models )
or q0 < -1
( Lemaitre models )
-Such "critical" models don't exist if q0 is between -1 and 1/2
Example1: q0 = -1.1 ; z = 2 whence L0 = 1.107976565 ( line 29 )
-1.1 ENTER^
2 XEQ "LEM" >>>>
D = 17.355 109 ly
RDN D0 = 32.783 109 ly
RDN DL = 87.124 109 ly
RDN VR = 2.3930
LASTX t0 = 9.9999 1099 years
= infinity
-If q0 < -1 , z must be smaller
than 2a - 1 ( ymin
= 1/(2a) ) here a = 2.589454154
( line 40 )
Example2: q0 = 2.375 ; z = 2 whence L0 = 1 ( line 29 )
2.375 ENTER^
2 XEQ "LEM" >>>>
D = 5.0238 109 ly
RDN D0 = 7.4017 109 ly
RDN DL = 15.599 109 ly
RDN VR = 0.5403
LASTX t0 = 5.7825 109 years
-If q0 > 1/2 , ymax = 1/(2a) , here a = 1/3
-Writing SIZE 000 programs is always an interesting challenge,
but several bytes may be saved if you use standard registers ...
d) Euclidean
Universes
-We now assume k = 0 i-e 3.L0 + 2.q0 - 1 = 0
q0 = 1/2 is Einstein-de Sitter model
q0 = -1 is de Sitter model
-For other q0-values, the comoving distance requires
elliptic integrals
but the light-travel time distance D and the age of the Universe
may be expressed in terms of elementary functions:
d-1) -1 < q0 < 1/2
Formulae: H0.t0 = (3-6q0) -1/2 Ln ( (1+a)1/2 + a1/2 )2 with a = (1-2q0)/(2+2q0)
H0.D/c = (3-6q0) -1/2
Ln [ ( ( (z+1)3 + a )1/2 - a1/2 ) ( (
(z+1)3 + a )1/2 + a1/2 ) -1
( (1+a)1/2 + a1/2 )2 ]
01 LBL "EUCL" 02 X<>Y 03 ENTER^ 04 ST+ X 05 1 06 ST+ Z 07 ST+ T 08 - 09 CHS 10 STO M |
11 X<>Y 12 ST+ X 13 / 14 ENTER^ 15 R^ 16 3 17 Y^X 18 + 19 SQRT 20 ENTER^ |
21 R^ 22 SQRT 23 ST- Z 24 + 25 / 26 1 27 R^ 28 ST+ Y 29 SQRT 30 X<>Y |
31 SQRT
32 + 33 X^2 34 ST* Y 35 LN 36 X<>Y 37 LN 38 0 39 X<> M 40 3 |
41 * 42 SQRT 43 137 E8 44 X<>Y 45 / 46 ST* Z 47 * 48 END |
( 71 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Y | q0 | t0 |
X | z | D |
Example: q0 = -0.7
& z = 7 ( whence L0
= 0.8 )
-0.7 ENTER^
7 XEQ "EUCL"
>>>> D = 1.3840 1010 ly
X<>Y t0 = 1.4742 1010
years
d-2) q0 > 1/2
Formulae: H0.t0 = (-3+6q0) -1/2 [ PI - 2.Arctan ( (1+a)1/2 (-a) -1/2 ) ] with a = (1-2q0)/(2+2q0)
H0.D/c = 2.(-3+6q0) -1/2
[ Arctan ( ( (z+1)3 + a )1/2 (-a) -1/2
) - Arctan ( ( 1 + a )1/2 (-a) -1/2 ]
01 LBL "EUCL2" 02 DEG 03 X<>Y 04 ENTER^ 05 ST+ X 06 1 07 ST+ Z 08 ST+ T 09 - 10 STO M |
11 X<>Y 12 ST+ X 13 / 14 ENTER^ 15 R^ 16 3 17 Y^X 18 - 19 CHS 20 1 |
21 R^ 22 ST- Y 23 ST/ Z 24 / 25 SQRT 26 ATAN 27 X<>Y 28 SQRT 29 ATAN 30 X<>Y |
31 ST- Y 32 D-R 33 CHS 34 ST+ X 35 PI 36 + 37 X<>Y 38 ST+ X 39 D-R 40 0 |
41 X<> M
42 3 43 * 44 SQRT 45 137 E8 46 X<>Y 47 / 48 ST* Z 49 * 50 END |
( 76 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
Y | q0 | t0 |
X | z | D |
Example: q0 = 2
& z = 7 ( whence L0
= -1 )
2 ENTER^
7 XEQ "EUCL"
>>>> D = 6.8878 109 ly
X<>Y t0 = 7.1733 109
years
e) More
General Models
e-1) Numerical Integration ( program#1 )
-Three integrals are needed to compute t0 , D and D0
-The following program uses the change of variable y = u2
and Gauss-Legendre 3-point formula.
Data Registers: R00 thru R16 R00 thru R08 are used by "GL3"
R09: z + 1
R12: 2(q0 + L0)
R15-R16: temp
R10: q0
R13: 2q0 + 3L0 - 1
R11: L0
R14: (1/H0).t0
when the program stops:
R00 = k ( +1 = Spherical
, 0 = Euclidean , -1 = Hyperbolic )
R01 = D , R02 = D0 , R03 = DL
, R04 = VR , R05 = t0 , R06 = R0 ( current
scale factor )
Flags: F00 set flag F00 if
you don't want to re-calculate the age of the Universe t0
F10
Subroutine: "GL3" Gauss-Legendre 3-point formula ( cf "Numerical Integration for the HP-41" )
-You'll get DATA ERROR line 20 if the density of matter
is negative i-e q0 + L0 < 0
01 LBL "COSMO" 02 DEG 03 1 04 STO 02 05 + 06 STO 09 07 "S" 08 ASTO 00 09 SF 10 10 FS? 00 11 GTO 01 12 CLX 13 STO 01 14 + 15 STO 10 16 X<>Y 17 STO 11 18 + 19 X<0? 20 LN 21 STO 12 22 ST+ X 23 + 24 1 25 - 26 STO 13 27 3 28 Y^X 29 RCL 12 30 ST+ 12 31 X^2 |
32 27 33 * 34 RCL 11 35 * 36 X>Y? 37 GTO 00 38 RCL 10 39 1 40 + 41 X>0? 42 GTO 00 43 90 44 TAN 45 STO 14 46 GTO 01 47 LBL 00 48 XEQ 02 49 STO 14 50 LBL 01 51 RCL 09 52 SQRT 53 1/X 54 STO 01 55 XEQ 02 56 STO 15 57 CF 10 58 XEQ 02 59 STO 02 60 STO 04 61 RCL 13 62 ABS |
63 SQRT 64 X=0? 65 SIGN 66 1/X 67 STO 06 68 / 69 ENTER^ 70 E^X-1 71 LASTX 72 CHS 73 E^X-1 74 - 75 2 76 / 77 RCL Y 78 R-D 79 SIN 80 RCL 13 81 X#0? 82 ENTER^ 83 X>0? 84 ENTER^ 85 GTO 04 86 LBL 02 87 E99 88 STO 16 89 SIGN 90 STO 03 91 LBL 03 92 RCL 03 93 ST+ 03 |
94 XEQ "GL3" 95 VIEW X 96 RND 97 LASTX 98 X<> 16 99 RND 100 X#Y? 101 GTO 03 102 RCL 04 103 RTN 104 LBL "S" 105 X^2 106 ENTER^ 107 ENTER^ 108 X^2 109 RCL 11 110 * 111 RCL 13 112 - 113 * 114 RCL 12 115 + 116 SQRT 117 1/X 118 ST+ X 119 FS? 10 120 * 121 RTN 122 LBL 04 123 R^ 124 RCL 06 |
125 * 126 RCL 09 127 * 128 STO 03 129 RCL 13 130 X#0? 131 SIGN 132 STO 00 133 RCL 14 134 STO 05 135 RCL 15 136 STO 01 137 137 E8 138 ST* 01 139 ST* 02 140 ST* 03 141 SF 25 142 ST* 05 143 ST* 06 144 RCL 05 145 SIGN 146 RCL 04 147 RCL 03 148 RCL 02 149 RCL 01 150 CLD 151 CLA 152 CF 25 153 END |
( 212 bytes / SIZE 017 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | L0 | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example1: L0 = 0.7
; q0 = -0.6 ; z =
7
*** These values correspond to (Omega)vac = L0 = 0.7 & (Omega)mat = 2(L0+q0) = 0.2 whence (rho)mat = 3H02(L0+q0)/(4PI.G) ~ 1.91 10-27 kg/m3
FIX 4
0.7 ENTER^
-0.6 ENTER^
7 XEQ "COSMO" >>>>
D = 1.3283 1010 ly
= R01
( in 93s )
The successive approximations
RDN D0 = 3.0246 1010 ly
= R02
of the 3 integrals ( for t0 D0
DL )
RDN DL = 2.6210 1011 ly
= R03
are displayed during the calculations.
RDN VR = 2.2077
= R04
LASTX t0 = 1.4168 1010 years
= R05
-We also have R06 = 4.3323 1010 = current
scale factor = R(t0) = R0
and
R00 = k = -1 , meaning the Universe is hyperbolic.
-Registers R10 thru R14 will be initialized after executing "COSMO" once.
-Set flag F00 and simply place z in X-register to compute other distances
with the same cosmological parameters and the same accuracy.
Notes:
-If ( 3L+2q-1)3 >= 27 L(q+L)2
and q <= -1 there is no Big Bang and t0
= infinity ( 9.999999999 E99 for the HP-41 )
-Lines 86 to 103 use Gauss Legendre 3-point formula
the number n of subintervals ( in register R03 ) is doubled until
2 consecutive rounded values are equal
thus, the accuracy is controlled by the display format
-Actually, for our Universe ( q0 of the order of -0.5
and L0 of the order of 0.6 ),
the results have at least 6 significant digits if n = 4 and lines
87 to 103 may be replaced by 4 STO 03 XEQ "GL3" RTN
-With our Universe, n = 10 produces almost 10 significant figures!
-This program may be used to draw a graphic representation of R(t):
( add FS? 04 RTN after line 56 and set flags
F00 and F04 in order to calculate H0.( t0
- t ) only )
for example: z = 7 means
y = 1/8 ( z = 1/y - 1 ) and light-travel time = 1.3283
1010 = t0 - t
whence t = 8.85 1010 or
H0.t = 0.0646 ( if y = 1/8 )
-More directly, add LBL "IG" after line 86 LBL
02 and load this short routine:
01 LBL "Y-H0T"
In this program, the origine of time ( t = 0 ) is the Big Bang.
02 X=0?
Of course, it will not work if there is no Big Bang!
03 RTN
In this case, replace lines 02 to 08 by
04 SF 10
05 SQRT
SF 10 SQRT STO 02 1 STO
01
06 STO 02
07 CLX
Thus, the origin of time will be "now"
08 STO 01
09 "S"
10 ASTO 00
11 XEQ "IG"
12 CLA
13 END
-Initialize registers R11 to R13 ( this is done if you have already executed
"COSMO" )
and with our example: q0 = -0.6
; L0 = 0.7 it yields ( in
FIX 3 )
For y = 3 3 XEQ "Y-H0T" >>>>
2.267 and similarly:
y | 0 | 0.1 | 0.25 | yI | 0.75 | 1 | 1.25 | 1.5 | 1.75 | 2 | 2.5 | 3 | 10 |
H0.t | 0 | 0.046 | 0.178 | 0.495 | 0.765 | 1.034 | 1.266 | 1.466 | 1.640 | 1.793 | 2.053 | 2.267 | 3.700 |
y = R(t)/R0
|
3 |
*
|
|
*
|
2 |
*
|
*
|
*
|
*
1 |
* now ( y = 1 )
|
*
|
* Infl
| *
|*----------|----------|----------|----------|-------
H0.t
0
0.5
1 1.5
2
Here, yI = ( 1 + q0/L0)1/3
= 0.522757959 I is a point of
inflexion: q > 0 for y < yI
and q < 0 for y > yI
Example2: L0 = 2/3 ; q0 = -0.5 ; z = 7
*** These values correspond to (Omega)vac = L0 = 2/3 & (Omega)mat = 2(L0+q0) = 1/3 whence (rho)mat = 3H02(L0+q0)/(4PI.G) ~ 3.19 10-27 kg/m3
2 ENTER^ 3
/
-0.5 ENTER^
7 XEQ "COSMO" >>>>
D = 1.2123 1010 ly
= R01
( in 97s in FIX 4 )
RDN D0 = 2.6605 1010 ly
= R02
RDN DL = 2.1284 1011 ly
= R03
RDN VR = 1.9420
= R04
LASTX t0 = 1.2822 1010 years
= R05
-We also have R06 = 1.3700 1010 = current
scale factor = R(t0) = R0
and
R00 = k = 0 , we have an Euclidean Universe.
Example3: L0 = 0.6 ; q0 = -0.3 ; z = 7
*** These values correspond to (Omega)vac = L0 = 0.4 & (Omega)mat = 2(L0+q0) = 0.6 whence (rho)mat = 3H02(L0+q0)/(4PI.G) ~ 5.74 10-27 kg/m3
0.6 ENTER^
-0.3 ENTER^
7 XEQ "COSMO" >>>>
D = 1.0689 1010 ly
= R01
( in 120s in FIX 4 )
RDN D0 = 2.2467 1010 ly
= R02
RDN DL = 1.6405 1011 ly
= R03
RDN VR = 1.6399
= R04
LASTX t0 = 1.1217 1010 years
= R05
-We also have R06 = 3.0634 1010 = current
scale factor = R(t0) = R0
and
R00 = k = +1 , the Universe is spherical.
Notes:
-If there is no Big Bang, the minimum ymin = Rmin/R0 may be found by solving the cubic equation: L0.y3 + ( 1-2q0-3L0 ).y + ( 2q0+2.L0 ) = 0
For example, if q0 = -1.1 &
L0 = 1.102 the cubic 1.102 y3
- 0.106 y + 0.004 = 0 has 3 real roots: 0.289201975
; 0.038320885 ; -0.327522859
and ymin = 0.289201975 which
corresponds to zmax = 1/ymin - 1 = 2.457791053
-If z is close to zmax , "COSMO" will be very slow: thus, in FIX 3
1.102 ENTER^
-1.1 ENTER^
2.45 XEQ "COSMO" yields D
= 2.459 1010
in 1h16mn for only 2 integrals !
D0 = 5.599 1010
DL = 1.410 1011
VR = 4.087
R0 = 4.208 1010
-For similar reasons, long execution time is to be expected if you are
looking for the half-period of an oscillating universe ( Domains 1&2
)
-"Plateau" models ( when the parameters L and q are close to their "critical"
values ) are a third difficult case.
-In all these 3 cases, the integrand is ( or is almost ) singular and
a good 41-emulator in turbo mode will be useful!
e-2) Numerical Integration ( program#2 )
-The program above gives accurate results in most cases, especially for
our Universe.
-If, however, you want to explore other models, other changes of variable
may be better. "COSMO2" uses the following ones:
a) If y has a positive minimum ( bounce models
) we set: y = ymin cosh2 v
b) If y has a finite maximum ( oscillating models
) we set: y = ymax sin2 v
c) For "plateau" models, we set y = b + e.sinh
v where b+i.e , b-i.e are the complex roots of the radicand
( e > 0 ).
-This last change of argument is put forward with little enthusiasm because
numerical integration remains difficult for plateau models.
-However, it performs much better than "COSMO", and even better if you
are using the integrator listed in the PPC ROM user manual.
Data Registers: R00 thru R22
R10: z + 1
R13: 2(q0 + L0)
R16: ymax
R19: proportional to D
R11: q0
R14: -2q0 - 3L0 + 1
R17: proportional to t0
R20-R21-R22: temp
R12: L0
R15: ymin
R18: proportional to T
when the program stops:
R00 = k
( +1 = Spherical , 0 = Euclidean , -1 = Hyperbolic )
R01 = D , R02 = D0
, R03 = DL , R04 = VR , R05 = t0 , R06
= R0 ( current scale factor )
R07 = Rmin ,
R08 = Rmax , R09 = T = Period of an oscillating
Universe ( 0 otherwise )
-Here, for bounce Universes, t0 is reckoned from the minimum of the scale factor R(t) ( the age of the Universe is infinite )
Flags: F00 set flag F00 if
you don't want to (re-)calculate the age of the Universe t0and
the period T
F01
is used by "P3" to indicate complex roots
F10
Subroutines: "P3"
Cubic equations ( cf "Polynomials for the HP-41" )
"GL3" Gauss-Legendre 3-point formula ( cf "Numerical Integration
for the HP-41" )
01 LBL "COSMO2" 02 DEG 03 CF 01 04 SF 10 05 1 06 STO 02 07 + 08 STO 10 09 CLX 10 STO 01 11 STO 18 12 + 13 STO 11 14 X<>Y 15 STO 12 16 + 17 ST+ X 18 X<0? 19 LN 20 STO 13 21 1 22 RCL Y 23 - 24 R^ 25 - 26 STO 14 27 R^ 28 X=0? 29 GTO 00 30 CLX 31 X<> Z 32 XEQ "P3" 33 GTO 01 34 LBL 00 35 RDN 36 CHS 37 X<=0? 38 CLST 39 X#0? 40 / 41 LBL 01 42 STO 03 43 RDN 44 STO 21 45 FS? 01 46 CLX 47 STO 04 48 X<>Y 49 STO 22 50 FS? 01 51 CLX 52 STO 05 53 1 54 RCL 03 55 X<Y? 56 GTO 00 57 CLX 58 RCL 04 59 X<Y? 60 GTO 00 61 CLX 62 RCL 05 63 X>Y? 64 CLX 65 LBL 00 66 X<0? 67 CLX 68 STO 15 69 CLX 70 RCL 05 71 X>Y? 72 GTO 00 |
73 CLX 74 RCL 04 75 X>Y? 76 GTO 00 77 CLX 78 RCL 03 79 X>Y? 80 GTO 00 81 90 82 TAN 83 LBL 00 84 STO 16 85 90 86 TAN 87 - 88 RCL 15 89 + 90 X=0? 91 GTO 03 92 LASTX 93 X=0? 94 GTO 02 95 "S1" 96 ASTO 00 97 SQRT 98 1/X 99 RCL 15 100 1/X 101 1 102 - 103 SQRT 104 + 105 LN 106 STO 02 107 RCL 03 108 RCL 04 109 X#Y? 110 GTO 00 111 90 112 TAN 113 GTO 01 114 LBL 00 115 FC? 00 116 XEQ 05 117 LBL 01 118 FC? 00 119 STO 17 120 RCL 10 121 RCL 15 122 * 123 1/X 124 SQRT 125 LASTX 126 1 127 - 128 SQRT 129 + 130 LN 131 GTO 04 132 LBL 02 133 "S2" 134 ASTO 00 135 90 136 STO 02 137 RCL 03 138 RCL 04 139 X=Y? 140 GTO 01 141 FC? 00 142 XEQ 05 143 ST+ X 144 FC? 00 |
145 STO 18
146 LBL 01 147 RCL 16 148 SQRT 149 1/X 150 ASIN 151 STO 02 152 FC? 00 153 XEQ 05 154 FC? 00 155 STO 17 156 RCL 10 157 RCL 16 158 * 159 SQRT 160 1/X 161 ASIN 162 GTO 04 163 LBL 03 164 RCL 11 165 1 166 + 167 FS? 01 168 X>0? 169 GTO 03 170 20 171 1/X 172 RCL 22 173 ABS 174 STO 22 175 X>Y? 176 GTO 03 177 "S3" 178 ASTO 00 179 RCL 21 180 X<>Y 181 / 182 ENTER^ 183 X^2 184 1 185 + 186 SQRT 187 + 188 LN 189 CHS 190 STO 01 191 1 192 RCL 21 193 - 194 RCL 22 195 / 196 ENTER^ 197 X^2 198 1 199 + 200 SQRT 201 + 202 LN 203 STO 02 204 FC? 00 205 XEQ 05 206 FC? 00 207 STO 17 208 RCL 10 209 1/X 210 RCL 21 211 - 212 RCL 22 213 / 214 ENTER^ 215 X^2 216 1 |
217 + 218 SQRT 219 + 220 LN 221 GTO 04 222 LBL 03 223 "S" 224 ASTO 00 225 RCL 11 226 1 227 + 228 RCL 12 229 X=Y? 230 X#0? 231 GTO 00 232 90 233 TAN 234 GTO 01 235 LBL 00 236 FC? 00 237 XEQ 05 238 LBL 01 239 FC? 00 240 STO 17 241 RCL 10 242 SQRT 243 1/X 244 LBL 04 245 STO 01 246 XEQ 05 247 STO 19 248 CF 10 249 XEQ 05 250 STO 02 251 STO 20 252 RCL 14 253 ABS 254 SQRT 255 X=0? 256 SIGN 257 1/X 258 STO 03 259 STO 06 260 STO 07 261 STO 08 262 / 263 ENTER^ 264 E^X-1 265 LASTX 266 CHS 267 E^X-1 268 - 269 2 270 / 271 RCL Y 272 R-D 273 SIN 274 RCL 14 275 X#0? 276 ENTER^ 277 X<0? 278 ENTER^ 279 GTO 07 280 LBL 05 281 E99 282 STO 20 283 SIGN 284 STO 03 285 LBL 06 286 RCL 03 287 ST+ 03 288 XEQ "GL3" |
289 VIEW X
290 RND 291 LASTX 292 X<> 20 293 RND 294 X#Y? 295 GTO 06 296 RCL 04 297 RTN 298 LBL "S" 299 X^2 300 ENTER^ 301 ENTER^ 302 X^2 303 RCL 12 304 * 305 RCL 14 306 + 307 * 308 RCL 13 309 + 310 SQRT 311 1/X 312 ST+ X 313 FS? 10 314 * 315 RTN 316 LBL "S1" 317 E^X 318 ENTER^ 319 1/X 320 + 321 2 322 / 323 X^2 324 RCL 15 325 * 326 ENTER^ 327 STO Z 328 RCL 15 329 + 330 * 331 RCL 12 332 * 333 RCL 13 334 RCL 15 335 / 336 - 337 SQRT 338 1/X 339 ST+ X 340 FS? 10 341 * 342 RTN 343 LBL "S2" 344 SIN 345 X^2 346 RCL 16 347 * 348 ENTER^ 349 STO Z 350 RCL 16 351 + 352 * 353 RCL 12 354 CHS 355 * 356 RCL 13 357 RCL 16 358 / 359 + 360 SQRT |
361 1/X 362 ST+ X 363 D-R 364 FS? 10 365 * 366 RTN 367 LBL "S3" 368 E^X 369 ENTER^ 370 1/X 371 - 372 2 373 / 374 RCL 22 375 * 376 RCL 21 377 + 378 STO Y 379 LASTX 380 ST+ X 381 + 382 RCL 12 383 * 384 FS? 10 385 GTO 00 386 * 387 SQRT 388 1/X 389 RTN 390 LBL 00 391 / 392 SQRT 393 RTN 394 LBL 07 395 R^ 396 RCL 10 397 * 398 ST* 03 399 RCL 14 400 X#0? 401 SIGN 402 CHS 403 STO 00 404 RCL 17 405 STO 05 406 RCL 19 407 STO 01 408 RCL 15 409 ST* 07 410 SF 24 411 RCL 16 412 ST* 08 413 RCL 18 414 STO 09 415 9 416 137 E8 417 LBL 08 418 ST* IND Y 419 DSE Y 420 GTO 08 421 RCL 05 422 SIGN 423 RCL 20 424 STO 04 425 RCL 03 426 RCL 02 427 RCL 01 428 CLA 429 CLD 430 CF 24 431 END |
( 602 bytes / SIZE 023 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | L0 | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example1: L0 = 1.102
; q0 = -1.1 ; z
= 2.45
1.102 ENTER^
-1.1 ENTER^
2.45 XEQ "COSMO2"
>>>> D = 2.4589 1010
ly = R01
( in 110s in FIX 3 instead of more than 1 hour with "COSMO" )
RDN D0 = 5.5990 1010 ly
= R02
RDN DL = 1.4101 1011 ly
= R03
RDN VR = 4.0869
= R04
LASTX t0 = 2.5501 1010 years
= R05
-We also have
R00 = k = 1 ( Spherical Universe )
R06 = 4.2079 1010 = current scale factor
= R(t0) = R0
R07 = 1.2169 1010 = Rmin
( bounce model )
R08 = 9.9999 1099 = Rmax = infinity
R09 = 0 ( non-oscillating Universe )
Example2: L0 = 0.2 ; q0 = 2 ; z = 7
0.2 ENTER^
2 ENTER^
7 R/S
>>>> D = 6.1763 109
ly = R01
( in 158s in FIX 3 )
RDN D0 = 1.1392 1010 ly
= R02
RDN DL = 5.7763 1010 ly
= R03
RDN VR = 0.8315
= R04
LASTX t0 = 6.3750 109 years
= R05
-We also have
R00 = k = +1 ( Spherical Universe )
R06 = 7.2205 109 = current scale factor
= R(t0) = R0
R07 = 0 = Rmin
R08 = 9.8405 109 = Rmax
R09 = 3.5658 1010 = T = time between a
Big Bang and a Big Crunch.
Example3: L0 = 1.108 ; q0 = -1.1 ; z = 7
1.108 ENTER^
-1.1 ENTER^
7
R/S >>>> D = 6.7540
1010 ly
= R01 (
in 11mn25s in FIX 3 )
RDN D0 = 2.8508 1011 ly
= R02
RDN DL = 2.6910 1011 ly
= R03
RDN VR = 20.8088
= R04
LASTX t0 = 7.2650 1010 years
= R05
R00 = k = 1
( Spherical Universe )
R06 = 3.8905 1010
= current scale factor = R(t0) = R0
R07 = 0 = Rmin
R08 = 9.9999 1099
= Rmax = infinity
R09 = 0 ( non-oscillating
Universe )
-This is a "plateau model" : it spends a long time in a quasistatic
state.
-D and D0 are computed ( relatively ) fast ( provided z is
not too large ), but t0 requires much more iterations.
-For q0 = -1.1 the critical
L0 is approximately 1.107976565 ( cf Lemaitre
models )
e-3) Elliptic Integrals ( Big Bang Universes only )
- t0 , D and D0 may be computed by Legendre
elliptic integrals ( cf the last 2 references below )
- "COSMO3" uses Carlson elliptic integrals instead: the formulas
are simpler.
D = (c/H0) §1z+1
du / u / ( 2(q0+L0 ).u3 + (1-2q0-3L0
).u2 + L0 )1/2
u = 1/y ; t0
corresponds to z = infinity
D0 = (c/H0) §1z+1
du / ( 2(q0+L0 ).u3 + (1-2q0-3L0
).u2 + L0 )1/2
-If the cubic 2(q0+L0 ).u3 + (1-2q0-3L0 ).u2 + L0 = 0 has 3 real roots a , b , c we have:
D = (c/3/H0) (2/(q0
+ L0 ))1/2 [ R J ( -a+1 ,
-b+1 , -c+1 , 1 ) - R J ( -a+z+1 , -b+z+1 , -c+z+1
, z+1 ) ]
D0 = (c/H0)
(2/(q0 + L0 ))1/2 [ R
F ( -a+1 , -b+1 , -c+1 ) - R F ( -a+z+1 , -b+z+1
, -c+z+1 ) ]
-If the cubic 2(q0+L0 ).u3 + (1-2q0-3L0 ).u2 + L0 = 0 has only 1 real root a and a pair of complex conjugate roots b + i.c , b - i.c we have:
D = (c/3/H0) (2/(q0
+ L0 ))1/2 [ R J ( -a+1 ,
-b+1+i.c , -b+1-i.c , 1 ) - R J ( -a+z+1 , -b+z+1+i.c
, -b+z+1-i.c , z+1 ) ]
D0 = (c/H0) (2/(q0
+ L0 ))1/2 [ R F ( -a+1
, -b+1+i.c , -b+1-i.c ) - R F ( -a+z+1 , -b+z+1+i.c
, -b+z+1-i.c ) ]
-This program doesn't work if there is no big bang or if the Universe
is empty.
Data Registers: R00 thru R21
R13: -a
R16: z + 1
R19: proportional to t0
R14: -b
R17: q0 + L0
R20: ymax
R15: -c
R18: 2q0 + 3L0 - 1
R21: proportional to T
when the program stops:
R00 = k
( +1 = Spherical , 0 = Euclidean , -1 = Hyperbolic )
R01 = D , R02 = D0 , R03
= DL , R04 = VR , R05 = t0 , R06 = R0
( current scale factor )
R07 = Rmax , R08 =
T = Period of an oscillating Universe ( 0 otherwise )
Flags: F00 set flag F00 if
you don't want to re-calculate the age of the Universe t0and
the period T
F01
is used by "P3" to indicate complex roots
Subroutines:
"P3"
( cf "Polynomials for the HP-41" )
"RF" & "RJ" Carlson elliptic integrals of
the first and third kind ( cf "Jacobian
Elliptic Functions and Elliptic Integrals for the "HP-41" )
"RFZ" & "RJZ" Carlson elliptic integrals of the
first and third kind complex arguments ---------------------------------------------------
-Lines 32 to 69 may be deleted if you don't want to calculate Rmax
and T
-Lines 59 to 64 are only useful if the Universe is an Eddington model
( finite Rmax but no Big Crunch )
01 LBL "COSMO3" 02 1 03 + 04 STO 16 05 FS? 00 06 GTO 04 07 CLX 08 + 09 + 10 STO 17 11 ST+ X 12 STO Z 13 + 14 1 15 - 16 STO 18 17 0 18 STO 21 19 R^ 20 CHS 21 XEQ "P3" 22 STO 13 23 RDN 24 STO 14 25 X<>Y 26 STO 15 27 X<>Y 28 R^ 29 1 30 XEQ 02 31 STO 19 |
32 90 33 TAN 34 STO 20 35 SIGN 36 CHS 37 FS? 01 38 GTO 00 39 RCL 15 40 X>Y? 41 GTO 01 42 CLX 43 RCL 14 44 X>Y? 45 GTO 01 46 X<>Y 47 LBL 00 48 RCL 13 49 X<Y? 50 CLX 51 LBL 01 52 CHS 53 X<=0? 54 GTO 04 55 1/X 56 STO 20 57 RCL 15 58 RCL 14 59 X<0? 60 X#Y? 61 FS? 30 62 FS? 01 |
63 FS? 30 64 GTO 04 65 RCL 13 66 LASTX 67 XEQ 02 68 ST+ X 69 STO 21 70 GTO 04 71 LBL 02 72 FC? 01 73 ST+ T 74 ST+ Z 75 ST+ Y 76 RDN 77 FS? 01 78 XEQ "RJZ" 79 FC? 01 80 XEQ "RJ" 81 RTN 82 LBL 03 83 FC? 01 84 ST+ T 85 ST+ Z 86 + 87 FS? 01 88 XEQ "RFZ" 89 FC? 01 90 XEQ "RF" 91 RTN 92 LBL 04 93 RCL 15 |
94 RCL 14 95 RCL 13 96 RCL 16 97 XEQ 02 98 RCL 19 99 X<>Y 100 - 101 STO 10 102 RCL 15 103 RCL 14 104 RCL 13 105 RCL 16 106 XEQ 03 107 STO 12 108 RCL 15 109 RCL 14 110 RCL 13 111 1 112 XEQ 03 113 RCL 12 114 - 115 STO 02 116 RCL 10 117 STO 01 118 RCL 19 119 STO 05 120 RCL 20 121 STO 07 122 RCL 21 123 STO 08 124 2 |
125 RCL 17
126 / 127 SQRT 128 ST* 02 129 3 130 / 131 ST* 01 132 ST* 05 133 ST* 08 134 RCL 18 135 X#0? 136 SIGN 137 STO 00 138 RCL 02 139 STO 09 140 RCL 18 141 ABS 142 SQRT 143 X=0? 144 SIGN 145 1/X 146 STO 06 147 SF 24 148 ST* 07 149 / 150 ENTER^ 151 E^X-1 152 LASTX 153 CHS 154 E^X-1 155 - |
156 2 157 / 158 RCL Y 159 R-D 160 SIN 161 RCL 00 162 X#0? 163 ENTER^ 164 X>0? 165 ENTER^ 166 R^ 167 RCL 06 168 * 169 RCL 16 170 * 171 STO 03 172 8 173 137 E8 174 LBL 05 175 ST* IND Y 176 DSE Y 177 GTO 05 178 RCL 05 179 SIGN 180 RCL 09 181 STO 04 182 RCL 03 183 RCL 02 184 RCL 01 185 CF 24 186 END |
( 286 bytes / SIZE 022 )
STACK | INPUTS | OUTPUTS |
T | / | VR |
Z | L0 | DL |
Y | q0 | D0 |
X | z | D |
L | / | t0 |
Example1: L0 = 0.7
; q0 = -0.6 ; z
= 7
0.7 ENTER^
-0.6 ENTER^
7 XEQ "COSMO3" >>>>
D = 1.328255073 1010 ly
= R01
( in 140s ) flag F01 is set
RDN D0 = 3.024557313 1010
ly = R02
RDN DL = 2.621046346 1011
ly = R03
RDN VR = 2.207706068
= R04
LASTX t0 = 1.416778742 1010
years = R05
R00 = k = -1 , meaning the Universe
is hyperbolic.
R06 = 4.332320394 1010
= current scale factor = R(t0) = R0
R07 = 9.999999999 1099
= infinity = Rmax
R08 = 0 ( non oscillating Universe
)
Example2: L0 = 0.2 ; q0 = 2 ; z = 7
0.2 ENTER^
2 ENTER^
7 XEQ "COSMO3"
>>>> D = 6.176349709 109
ly = R01
( in 145s ) flag F01 is clear
RDN D0 = 1.139222269 1010
ly = R02
RDN DL = 5.776287398 1010
ly = R03
RDN VR = 0.831549101
= R04
LASTX t0 = 6.375024998 109
years = R05
R00 = k = +1 ( Spherical Universe
)
R06 = 7.220533991 109
= current scale factor = R(t0) = R0
R07 = 9.840506634 109
= Rmax
R08 = 3.565763808 1010
= T = time between a Big Bang and a Big Crunch.
-Registers R13 thru R21 will be initialized after executing "COSMO3" once.
-Set flag F00 , do not change flag F01 and simply place z in X-register
to compute other distances with the same cosmological parameters.
Note: With L0
= 1.108 & q0 = -1.1
"COSMO3" yields t0 = 7.264885687 1010
years
f) Non-Vanishing
Pressure
-We now assume that the Universe is made of dust & radiation.
-In this case, Einstein's equations yield:
2.q + 2.L = 8.PI.G.(rho)/(3H2)
+ ¶
where ¶ = 8.PI.G.prad/(c2H2)
is the pressure parameter = (Omega)rad
2.q + 3.L - 1 = k.c2/(H2R2)
+ ¶
and prad is the pressure
of radiation
(rho) = (rho)mat + 3.prad/c2
and according to Stefan's law: 3prad = (rho)rad
c2 = a.T4
where a = Stefan's
Constant and T = temperature of the Cosmic Microwave Background
-If we assume there is no creation/annihilation of matter, (rho)mat
R3 = constant and prad R4
= constant.
-The integrals become:
t0 = (1/H0)
§01 y. [ (Omega)lambda.y4
+ ( 1-(Omega)tot ).y2 + (Omega)mat.y +
(Omega)rad ] -1/2 dy
D = (c/H0) §y(em)1
y. [ (Omega)lambda.y4 + ( 1-(Omega)tot
).y2 + (Omega)mat.y + (Omega)rad
] -1/2 dy
y(em) = y at the instant of emission
D0 = (c/H0) §y(em)1
[ (Omega)lambda.y4 + ( 1-(Omega)tot
).y2 + (Omega)mat.y + (Omega)rad
] -1/2 dy
z + 1 = R0/R = 1/yem
where (Omega)tot = (Omega)mat + (Omega)lambda
+ (Omega)rad
f-1) Pure Radiation
-Here, (Omega)mat = 0
-Such models have been studied by Tolman.
-There are many cases, and the following program only works for Big Bang
Universes with a positive Cosmological Constant.
-The comoving radial distance involves elliptic integrals and "TOL" calculates
the light-travel time Distance D,
the age of the Universe t0 , the current radius of the
Universe R0 and the constant k
( D & t0 may be expressed in terms of elementary
functions )
Formula:
H0.(t0 - te ) = 1/(2.L01/2) Ln { [ 1 + (1-¶0-L0)/(2.L0) + 1/L01/2 ] / [ 1/(z+1)2 + (1-¶0-L0)/(2.L0) + ( 1/(z+1)4 + ( (1-¶0-L0)/(z+1)2 + ¶0 )/L0 )1/2 ] }
( replace z by +infinity to get t0 )
Data Registers: /
Flags: /
Subroutines: /
01 LBL "TOL" 02 1 03 + 04 X^2 05 1/X 06 STO M 07 SIGN 08 X<>Y 09 STO T 10 - 11 X<>Y 12 STO N 13 - 14 STO O 15 RCL M |
16 * 17 RCL N 18 + 19 X<>Y 20 / 21 RCL M 22 X^2 23 + 24 SQRT 25 RCL M 26 + 27 RCL O 28 R^ 29 ST+ X 30 / |
31 ST+ Y 32 STO M 33 R^ 34 ST/ N 35 SQRT 36 1/X 37 + 38 1 39 + 40 STO Z 41 X<>Y 42 / 43 LN 44 X<> M 45 RCL N |
46 SQRT 47 + 48 / 49 LN 50 X<>Y 51 SQRT 52 ST+ X 53 ST/ M 54 / 55 RCL O 56 CHS 57 ABS 58 LASTX 59 X#0? 60 SIGN |
61 RDN 62 X=0? 63 SIGN 64 SQRT 65 1/X 66 STO Z 67 CLX 68 137 E8 69 ST* M 70 ST* Z 71 * 72 RCL M 73 CLA 74 END |
( 109 bytes / SIZE 000 )
STACK | INPUTS | OUTPUTS |
T | / | k |
Z | ¶0 | R0 |
Y | L0 | t0 |
X | z | D |
( execution time = 3 seconds )
Example: ¶0 = (Omega)rad = 49 10 -6 , L0 = (Omega)lambda = 0.61 , z = 7
49 E-6 ENTER^
0.61
ENTER^
7
XEQ "TOL" >>>> D = 1.564459530
1010 light-years
RDN t0 = 1.814132844 1010
years
RDN R0 = 2.193893533 1010
light-years
RDN k = -1 ( hyperbolic Universe )
-Neglecting matter is probably not realistic, unless an unknown negative
density of matter
exactly compensate for the positive density of matter in the galaxies
( ???? )
f-2) Radiation+Dust: Numerical Integration
Data Registers: R00 thru R17 • R09 = nbre of subintervals if F03 is set ( unused otherwise )
R10 = z + 1
R13 = (Omega)rad
R11 = (Omega)mat
R14 = (Omega)tot - 1
R12 = (Omega)lambda
R15-R16-R17: temp
-when the program stops:
R00 = k ( +1 = Spherical ,
0 = Euclidean , -1 = Hyperbolic )
R01 = D , R02 = D0 , R03 = DL , R04 = VR
, R05 = t0 , R06 = R0 ( current scale factor )
Flags: F00 set flag F00 if you don't want to (re-)calculate the age of the Universe t0
F03 set flag F03 to fix the number n of subintervals used by "GL3"
and store n into R09
if F03 is clear, n is doubled until 2 consecutive rounded values are equal.
F10
Subroutine: "GL3" Gauss-Legendre 3-point formula ( cf "Numerical Integration for the HP-41" )
-If flag F03 is clear, the accuracy is controlled by the display format
01 LBL "COSMO4" 02 DEG 03 SF 10 04 STO 10 05 "S" 06 ASTO 00 07 CLX 08 STO 01 09 + 10 STO 11 11 X<>Y 12 STO 12 13 + 14 X<>Y 15 STO 13 16 + 17 1 18 STO 02 19 ST+ 10 20 - 21 STO 14 22 FC? 00 |
23 XEQ 01 24 FC? 00 25 STO 15 26 RCL 10 27 SQRT 28 1/X 29 STO 01 30 XEQ 01 31 STO 16 32 CF 10 33 XEQ 01 34 STO 02 35 STO 04 36 RCL 14 37 ABS 38 SQRT 39 X=0? 40 SIGN 41 1/X 42 STO 03 43 STO 06 44 / |
45 ENTER^ 46 E^X-1 47 LASTX 48 CHS 49 E^X-1 50 - 51 2 52 / 53 RCL Y 54 R-D 55 SIN 56 RCL 14 57 X#0? 58 ENTER^ 59 X>0? 60 ENTER^ 61 GTO 03 62 LBL 01 63 CLX 64 STO 17 65 SIGN 66 FS? 03 |
67 RCL 09 68 STO 03 69 LBL 02 70 RCL 03 71 FC? 03 72 ST+ 03 73 XEQ "GL3" 74 ST+ X 75 VIEW X 76 FS? 03 77 RTN 78 RND 79 ENTER^ 80 X<> 17 81 X#Y? 82 GTO 02 83 LASTX 84 RTN 85 LBL "S" 86 X^2 87 ENTER^ 88 ENTER^ |
89 X^2 90 RCL 12 91 * 92 RCL 14 93 - 94 * 95 RCL 11 96 + 97 * 98 RCL 13 99 + 100 / 101 SQRT 102 FS? 10 103 * 104 RTN 105 LBL 03 106 R^ 107 RCL 10 108 * 109 ST* 03 110 RCL 14 |
111 X#0? 112 SIGN 113 STO 00 114 RCL 16 115 137 E8 116 ST* 02 117 ST* 03 118 ST* 06 119 * 120 STO 01 121 RCL 15 122 LASTX 123 * 124 STO 05 125 SIGN 126 RCL 04 127 RCL 03 128 RCL 02 129 RCL 01 130 CLA 131 CLD 132 END |
( 186 bytes / SIZE 018 )
STACK | INPUTS | OUTPUTS |
T | ¶0 | VR |
Z | L0 | DL |
Y | (Omega)mat | D0 |
X | z | D |
L | / | t0 |
Example1: With
(Omega)mat = 0.044 , (Omega)lambda
= 0.519 , (Omega)rad = 0.000049
& z = 7
• for instance, FIX 4 CF 03
0.000049 ENTER^
0.519
ENTER^
0.044
ENTER^
7
XEQ "COSMO4" >>>> D =
1.4046 E10 l-y = R01
---Execution time = 94s---
RDN D0 = 3.4012 E10 l-y
= R02
RDN DL = 4.1177 E11 l-y
= R03
RDN VR = 2.4826
= R04 ( unit c = 1 )
LASTX t0 = 1.5507 E10 years
= R05
and R00 = k = -1 ( hyperbolic space )
R06 =
R0 = 2.0725 E10 light-years
-For another redshift - in the same Universe - Set flag F00
Example2: With (Omega)mat = 0.271 , (Omega)lambda = 0.732 , (Omega)rad = 0.000049 & z = 7
( These Omega-values are close to those suggested by WMAP = NASA's Wilkinson Microwave Anisotropy Probe )
• for instance, SF 03 , n = 8 STO 09
0.000049 ENTER^
0.732
ENTER^
0.271
ENTER^
7
XEQ "COSMO4" >>>> D =
1.2823287 E10 l-y = R01
---Execution time = 81s---
RDN D0 = 2.8607721 E10
l-y = R02
RDN DL = 2.2835499 E11
l-y = R03
RDN VR = 2.0881548
= R04 ( unit c = 1 )
LASTX t0 = 1.3596702 E10
years = R05
and R00 = k = +1 ( spherical space )
R06 =
R0 = 2.4810862 E11 light-years
-For another redshift - in the same Universe - Set flag F00
f-3) Radiation+Dust: Elliptic Integrals
-There are many subcases and the following program only works if the cosmological constant is positive
and if the quartic: (Omega)lambda.y4 + ( 1-(Omega)tot ).y2 + (Omega)mat.y + (Omega)rad
has 2 distinct non-positive roots and a pair of complex conjugate roots.
-These conditions are precisely satisfied by our Universe !
Formulae:
1°) The D0-integral is calculated by the following method:
§ab [ ( y2+c.y+d ) ( y2+p.y+q ) ] -1/2 dy = 2.RF ( U2 ; U2+T+V ; U2+T-V ) where
(b-a).U = [ A(a).B(b) ]1/2 + [ A(b).B(a) ]1/2
with A(y) = ( y2+c.y+d ) and
B(y) = ( y2+p.y+q )
T = c.p/2 - d - q
V = 2 [ ( c2/4 - d ) ( p2/4 - q ) ]1/2
2°) The other integral is of the form I = §ab y [ ( y+m ) ( y+n ) ( y2+p.y+q ) ] -1/2 dy and involves elliptic integrals of the 3rd kind.
-I've split this integral into 2 integrals:
I = §ab ( y+ m ) [ ( y+m ) ( y+n ) ( y2+p.y+q ) ] -1/2 dy - §ab m [ ( y+m ) ( y+n ) ( y2+p.y+q ) ] -1/2 dy
-The integral on the right may be obtained as above.
-And the integral on the left is computed by executing RJZ twice , after
the change of variable u = 1/(y+m)
Data Registers: R00 thru R32
R10 = z + 1
R13 = (Omega)rad
R11 = (Omega)mat
R14 = (Omega)tot - 1
R12 = (Omega)lambda
R15 thru R32: temp
-when the program stops:
R00 = k ( +1 = Spherical
, 0 = Euclidean , -1 = Hyperbolic )
R01 = D , R02 = D0 , R03 = DL , R04 = VR
, R05 = t0 , R06 = R0 ( current scale factor )
Flags: F00 set flag F00 if you don't want to re-calculate the age of the Universe t0
F01 & F02 are used by "P4"
Subroutines:
"P4" ( cf "Polynomials
for the HP-41" , the new version )
"1/Z" ( cf "Complex
Functions for the HP-41" )
"RFZ" & "RJZ" Carlson Elliptic Integrals of the
1st & 3rd kind, complex arguments.
( cf "Jacobian elliptic functions and elliptic integrals for the
HP-41" )
-Line 124 is a three-byte GTO 01
01 LBL "COSMO5" 02 STO 10 03 CLX 04 + 05 STO 11 06 X<>Y 07 STO 12 08 + 09 X<>Y 10 STO 13 11 + 12 1 13 ST+ 10 14 - 15 STO 14 16 CHS 17 RCL 11 18 RCL 13 19 RCL 12 20 ST/ T 21 ST/ Z 22 / 23 0 24 RDN 25 XEQ "P4" 26 FS?C 01 27 FS?C 02 28 SF 99 29 STO 23 30 ST+ X 31 CHS 32 STO 18 33 RDN 34 STO 15 35 RDN 36 X<Y? 37 X<>Y 38 STO 16 39 X<>Y 40 STO 17 41 - 42 STO 32 43 R^ 44 RCL 23 45 R-P 46 X^2 47 STO 19 |
48 RCL 18
49 + 50 1 51 + 52 STO 21 53 RCL 10 54 1/X 55 RCL 18 56 - 57 RCL 10 58 / 59 RCL 16 60 RCL 17 61 * 62 STO 20 63 + 64 * 65 SQRT 66 RCL 10 67 1/X 68 RCL 18 69 + 70 RCL 10 71 / 72 RCL 19 73 + 74 RCL 20 75 RCL 18 76 - 77 1 78 + 79 STO 22 80 * 81 SQRT 82 + 83 1 84 RCL 10 85 1/X 86 - 87 / 88 X^2 89 STO 29 90 RCL 18 91 X^2 92 RCL 20 93 4 94 * |
95 - 96 RCL 19 97 RCL 18 98 2 99 / 100 X^2 101 - 102 * 103 SQRT 104 STO 24 105 RCL 18 106 X^2 107 CHS 108 2 109 / 110 RCL 19 111 - 112 RCL 20 113 - 114 STO 25 115 RCL 29 116 ST+ Y 117 XEQ "RFZ" 118 ST+ X 119 RCL 12 120 SQRT 121 / 122 STO 29 123 FS? 00 124 GTO 01 125 1 126 RCL 15 127 RCL 16 128 ST- Z 129 RCL 23 130 - 131 XEQ "1/Z" 132 STO 30 133 X<>Y 134 STO 31 135 X<>Y 136 RCL 32 137 1/X 138 R^ 139 1/X 140 ST+ Y 141 ST+ Z |
142 RDN 143 XEQ "RJZ" 144 STO 26 145 STO 27 146 RCL 31 147 RCL 30 148 RCL 32 149 1/X 150 RCL 16 151 CHS 152 X=0? 153 GTO 00 154 1/X 155 ST+ Y 156 ST+ Z 157 RDN 158 XEQ "RJZ" 159 ST- 26 160 LBL 00 161 RCL 23 162 RCL 16 163 - 164 X^2 165 RCL 15 166 X^2 167 + 168 RCL 32 169 * 170 SQRT 171 3 172 * 173 STO 28 174 ST/ 26 175 ST/ 27 176 RCL 24 177 RCL 19 178 RCL 22 179 * 180 SQRT 181 RCL 20 182 RCL 21 183 * 184 SQRT 185 + 186 X^2 187 RCL 25 188 X<>Y |
189 ST+ Y 190 XEQ "RFZ" 191 RCL 16 192 * 193 ST+ 26 194 2 195 RCL 12 196 SQRT 197 / 198 ST* 26 199 LBL 01 200 RCL 31 201 RCL 30 202 RCL 10 203 1/X 204 RCL 16 205 - 206 1/X 207 RCL 32 208 1/X 209 X<>Y 210 ST+ Y 211 ST+ Z 212 RDN 213 XEQ "RJZ" 214 RCL 28 215 / 216 RCL 27 217 X<>Y 218 - 219 ST+ X 220 RCL 12 221 SQRT 222 / 223 RCL 29 224 RCL 16 225 * 226 + 227 STO 01 228 RCL 29 229 STO 02 230 STO 04 231 RCL 14 232 ABS 233 SQRT 234 X=0? 235 SIGN |
236 1/X 237 STO 03 238 STO 06 239 / 240 ENTER^ 241 E^X-1 242 LASTX 243 CHS 244 E^X-1 245 - 246 2 247 / 248 RCL Y 249 R-D 250 SIN 251 RCL 14 252 X#0? 253 ENTER^ 254 X>0? 255 ENTER^ 256 R^ 257 RCL 10 258 * 259 ST* 03 260 RCL 14 261 X#0? 262 SIGN 263 STO 00 264 RCL 26 265 STO 05 266 137 E8 267 ST* 01 268 ST* 02 269 ST* 03 270 ST* 05 271 ST* 06 272 RCL 05 273 SIGN 274 RCL 04 275 RCL 03 276 RCL 02 277 RCL 01 278 END |
( 416 bytes / SIZE 033 )
STACK | INPUTS | OUTPUTS |
T | ¶0 | VR |
Z | L0 | DL |
Y | (Omega)mat | D0 |
X | z | D |
L | / | t0 |
Example1: With
(Omega)mat = 0.044 , (Omega)lambda
= 0.519 , (Omega)rad = 0.000049
& z = 7
0.000049 ENTER^
0.519
ENTER^
0.044
ENTER^
7
XEQ "COSMO5" >>>> D =
1.404555850 E10 l-y = R01
---Execution time = 63s---
RDN D0 = 3.401195936 E10
l-y = R02
RDN DL = 4.117670678 E11
l-y = R03
RDN VR = 2.482624771
= R04 ( unit c = 1 )
LASTX t0 = 1.550654988 E10
years = R05
and R00 = k = -1 ( hyperbolic space )
R06 =
R0 = 2.072546096 E10 light-years
-For another redshift - in the same Universe - Set flag F00
Example2: With (Omega)mat = 0.271 , (Omega)lambda = 0.732 , (Omega)rad = 0.000049 & z = 7
( These Omega-values are close to those suggested by WMAP = NASA's Wilkinson Microwave Anisotropy Probe )
0.000049 ENTER^
0.732
ENTER^
0.271
ENTER^
7
XEQ "COSMO5" >>>> D =
1.282328697 E10 l-y = R01
---Execution time = 53s---
RDN D0 = 2.860772072 E10
l-y = R02
RDN DL = 2.283549897 E11
l-y = R03
RDN VR = 2.088154797
= R04 ( unit c = 1 )
LASTX t0 = 1.359670612 E10
years = R05
and R00 = k = +1 ( spherical space )
R06 =
R0 = 2.481086210 E11 light-years
-For another redshift - in the same Universe - Set flag F00
Notes:
-If F00 is clear, execution time ~ 30 seconds.
-These execution times are exact if you have used the M-Code functions
RFZ & RJZ
-Otherwise, they are longer.
-The M-code functions RFZ & RJZ also allow to reduce the SIZE, since registers R00 thru R09 are unused before line 227 after "P4" is executed.
-If the quartic does not satisfy the required conditions, you'll get
NON EXISTENT line 28
References:
[1] Stamatia Mavridès - "L'Univers relativiste" - Masson
ISBN 2-225-36080-7 ( in French )
[2] Jean Heidmann - "Introduction à la cosmologie" - PUF
( in French )
[3] Landau & Lifshitz - "Classical Theory of Fields" - Pergamon
Press
[4] Feige - "Elliptic Integrals for Cosmological Constant Cosmologies"
- Astron. Nachr 313 (1992) 3, 139-163
[5] Kantowski, Kao, Thomas - "Distance-Redshift Relations in Inhomogeneous
Friedmann-Lemaitre-Robertson-Walker Cosmology" -
The Astrophysical Journal, 545: 549-560