hp41programs

Satellites The Satellites of Jupiter for the HP-41
 

Overview
 

-This program calculates the coordinates x and y of the 4 greatest satellites of Jupiter ( Io , Europe , Ganymede , Callisto ), as seen from the Earth.
-The x-axis coincides with the equator of the planet, the y-axis is the planet's rotation axis.
-Jupiter is the origin and x , y are measured in units of Jupiter's equatorial radius. ( the polar radius of Jupiter is 0.933 )

                                     y ( North )
                                      |
                                      |
                                      |
( East ) ----------------JUP------------------ x   ( West )
                                      |
                                      |
                                ( South )
 

Data Registers:    R00 = the number of days since 01/01/2000  0h ET

                               R01 = x1 ;   R03 = x2 ; R05 = x3 ;  R07 = x4
                               R02 = y1 ;   R04 = y2 ; R06 = y3 ;  R08 = y4   and  R09 =  - sin DE  where DE is the planetocentric declination of the Earth.

              Satellite 1 = Io  ;   Satellite 2 = Europe  ;  Satellite 3 =  Ganymede  ;  Satellite 4 = Callisto.

Flags:  F01  F02  F03  F04

    -Flag nn  is set when the distance Earth-Satellite n  is shorter than the distance Earth-Jupiter:
    -This is useful to distinguish inferior conjunctions from superior conjunctions.

Subroutine:   -none if you have a Time-module
                         "J0"  otherwise.( cf  for instance "Julian & Gregorian Calendars for the HP-41" )

-If you don't have a Time-module, replace lines  07 to 09  by  XEQ "J0"   +
-If you don't have an X-Functions module, replace lines 60-61 by  CF 01  CF 02  CF 03  CF 04
 
 

  01  LBL "IEGC"
  02  DEG
  03  HR
  04  24
  05  /
  06  X<>Y
  07  1.012   
  08  DDAYS
  09  -
  10  STO 00
  11  .9856
  12  *
  13  3
  14  -
  15  STO 01
  16  SIN
  17  1.92
  18  *
  19  RCL 01
  20  ST+ X
  21  SIN
  22  50
  23  /
  24  +
  25  RCL 00
  26  12.036
  27  /
  28  RCL 00
  29  896
  30  /
  31  7
  32  -
  33  SIN
  34  3
  35  /
  36  STO 02
  37  ST+ Z
  38  -
  39  20
  40  +
  41  STO 03
  42  SIN
  43  5.56
  44  *
  45  RCL 03
  46  ST+ X
  47  SIN
  48  6
  49  /
  50  +
  51  STO 09
  52  -
  53  RCL 00       
  54  .902518
  55  *
  56  +
  57  65.66
  58  +
  59  STO 04
  60  CLX   
  61  X<> F 
  62  1
  63  RCL 01
  64  COS
  65  60
  66  /
  67  -
  68  5209
  69  RCL 03
  70  COS
  71  252
  72  *
  73  -
  74  RCL 03
  75  ST+ X
  76  COS
  77  6
  78  *
  79  -
  80   E3
  81  /
  82  STO 05
  83  X^2
  84  LASTX
  85  R^
  86  *
  87  ST+ X
  88  RCL 04
  89  COS
  90  *
  91  -
  92  X<>Y
  93  X^2
  94  +
  95  SQRT
  96  STO 07
  97  /
  98  RCL 04
  99  SIN
100  *
101  ASIN
102  STO 08       
103  LASTX
104  RCL 00
105  12.035
106  /
107  56.3
108  +
109  RCL 02
110  -
111  RCL 09
112  ST- 08
113  +
114  STO 06
115  COS
116  *
117  2.22
118  *
119  RCL 06
120  20.8
121  +
122  SIN
123  3.12
124  *
125  -
126  RCL 06
127  32.5
128  -
129  COS
130  RCL 05
131  RCL 07
132  ST- Y
133  /
134  *
135  1.3
136  *
137  -
138  SIN
139  STO 09
140  368
141  LN
142  RCL 00
143  RCL 07
144  173
145  /
146  -
147  STO 07       
148  101.291633
149  *
150  52.24
151  -
152  RCL 08
153  +
154  STO 03
155  3
156  *
157  RCL 07
158  50.234518
159  *
160  19.4
161  -
162  RCL 08
163  +
164  STO 05
165  ST+ X
166  -
167  180
168  +
169  STO 01
170  RCL 03
171  -
172  ST+ X
173  STO 06
174  COS
175  41
176  /
177  -
178  STO 02
179  RCL 06
180  SIN
181  .47
182  *
183  ST+ 01
184  9.4
185  RCL 03
186  RCL 05
187  -
188  ST+ X
189  STO 06
190  COS
191  5
192  D-R
193  *
194  -
195  STO 04       
196  RCL 06
197  SIN
198  2.9
199  LN
200  *
201  ST+ 03
202  859
203  D-R
204  RCL 07
205  50.31048
206  *
207  54
208  -
209  STO 06
210  COS
211  46
212  /
213  -
214  X<> 06
215  SIN
216  6
217  /
218  ST+ 05
219  26.37
220  RCL 07
221  21.48798
222  *
223  214.07
224  +
225  RCL 08
226  +
227  X<> 07
228  21.56923
229  *
230  76.6
231  +
232  STO 08
233  COS
234  11
235  D-R
236  *
237  -
238  RCL 08
239  SIN
240  .84
241  *
242  RCL 07       
243  +
244  X<>Y
245  P-R
246  X>0?
247  SF 04
248  RCL 09
249  *
250  STO 08
251  X<>Y
252  STO 07
253  RCL 05
254  RCL 06
255  P-R
256  X>0?
257  SF 03
258  RCL 09
259  *
260  STO 06
261  X<>Y
262  STO 05
263  RCL 03
264  RCL 04
265  P-R
266  X>0?
267  SF 02
268  RCL 09
269  *
270  STO 04
271  X<>Y
272  STO 03
273  RCL 01
274  RCL 02
275  P-R
276  X>0?
277  SF 01
278  RCL 09
279  *
280  STO 02
281  X<>Y
282  STO 01
283  END
 

 
   ( 453 bytes / SIZE 010 )
 
 

         STACK         INPUTS        OUTPUTS
              Y           Date              y1
              X        hh.mnss ( ET )              x1

 
Example1:    Find the configuration of the 4 Galilean satellites of Jupiter on 1992 December 16 at 0h UT = 0h00m59s  ET
 

     12.161992  ENTER^         ( if your HP-41 is in MDY format )
       0.0059      XEQ "IEGC"

and 31 seconds later    x1 = -3.45
                     X<>Y    y1 =   0.21

     RCL 03  >>>>   x2 = 7.45     RCL 05  >>>>  x3 = 1.24    RCL 07  >>>>  x4 = 7.09
     RCL 04 >>>>   y2 =  0.25    RCL 06  >>>>  y3 = 0.65     RCL 08 >>>>  y4 = 1.10

-Flags F01 F02 F03 F04 are set but it's not particularly useful here!
 

Example2:    Find the configuration of the Galilean satellites of Jupiter on 1984 September 20 at 6h34m  ET
 

     20.091984  ENTER^
       6.34            R/S                 yields    x1 =  0.00
                         X<>Y                          y1 =  0.20

     RCL 03  >>>>   x2 = -8.08     RCL 05  >>>>  x3 = 14.97    RCL 07  >>>>  x4 = -4.95
     RCL 04  >>>>   y2 =  -0.16    RCL 06  >>>>  y3 =  -0.01    RCL 08  >>>>  y4 = -0.86
 

-Since F01 is set , Io is in transit over Jupiter's disk because its distance to the planet's center is significantly inferior to 1.
 

Notes:

 -If you use "J0" , dates must be keyed in  1992.1216  and  1984.0920
 -The accuracy is of the order of  0.1 ( but x-values are more accurate than y-values )
 -The reference below also provides a high-accuracy method.

Reference:

[1]  Jean Meeus  "Astronomical Algorithms"  Willmann-Bell    ISBN 0-943396-61-1