hp41programs

Seifert-Weber

Seifert-Weber Space for the HP-41


Overview
 

-Hyperbolic spaces are usually infinite... if they are not multiconnected !

-The Seifert-Weber dodecahedral space is an example of a 3-Dimension hyperbolic space with a constant curvature R and a finite volume V.
-It is obtained by gluing the pairs of opposite sides of a regular hyperbolic dodecahedron, with a twist of 108°.

-If R = 1, this volume may be computed by the formula:

   V = 30 [ 2 L(36°+d) - 2 L(36°-d) - L(30°+d) + L(30°-d) + 2 L(90°-d) ]   where  d = Arc Tan [ sqrt(-14+10.sqrt(5)) / (3+sqrt(5)) ]

  and  L = Lobachevsky Function.
 

Program Listing
 

Data Registers:  R00 to R02: temp  R01 = Volume  at the end
Flags: /
Subroutine:  "LOB"  Lobachevsky function ( cf "Lobachevsky Function for the HP-41" )
 
 
 

 01  LBL "SWV"
 02  DEG
 03  304
 04  500
 05  SQRT         
 06  14
 07  +
 08  /
 09  SQRT
 10  5
 11  SQRT
 12  3
 13  +
 14  /
 15  ATAN
 16  STO 02       
 17  36
 18  +
 19  XEQ "LOB"
 20  STO 01
 21  36
 22  RCL 02       
 23  -
 24  XEQ "LOB"
 25  ST- 01
 26  90
 27  RCL 02 
 28  -
 29  XEQ "LOB"
 30  RCL 01
 31  +
 32  ST+ X
 33  STO 01 
 34  30
 35  RCL 02       
 36  +
 37  XEQ "LOB"
 38  ST- 01
 39  30
 40  RCL 02
 41  -
 42  XEQ "LOB"
 43  RCL 01       
 44  +
 45  30
 46  *
 47  STO 01
 48  END

 
    ( 91 bytes / SIZE 003 )
 
 

      STACK        INPUT      OUTPUT
           X             /             V

  With  V = 11.19906475   ( the last digit should be a 4 )

Notes:

-If R # 1, simply multiply the result by R^3.

-Lines 03 to 15 may be replaced by a single line  28.90854705
-And the whole program may be reduced to
 
 

 01  LBL "SWV"
 02  11.19906474
 03  END

 
-Or, if you place R in X-register:
 
 

 01  LBL "SWV"
 02  3
 03  Y^X
 04  11.19906474
 05  *
 06  END

 
-By comparison, the volume of a 3D-hypersphere is 2(PI)^2 = 19.73920880
-So, the Seifert-Weber space is smaller than the hypersphere.
 

Reference:

[1]  John G. Ratcliffe - "Foundations of Hyperbolic Manifolds" -  which may be dowloaded freely  here