Smallest Circle Containing 3 Celestial Bodies for the HP-41
Overview
-Given the coordinates of 3 celestial bodies A , B , C, "SMC" returns
the diameter ( in deg.mnss ) of the smallest circle containing these
bodies.
-There are 2 cases: either the smallest circle is the circle passing
through A , B , C or the diameter is the longest side of the triangle
ABC.
-The formulas are given in reference [1], page 127.
Program Listing
-First store the right-ascensions & declinations in registers R01 thru R06. Clear F01.
-Alternatively, you can also store the longitudes & latitudes expressed
in sexagesimal degrees ( ° ' " ). In this case, set flag F01
Data Registers: R00 temp ( Registers R01 thru R06 are to be initialized before executing "SMC" )
• R01 = R.A1 •
R03 = R.A2 • R05 =
R.A3 ( hh.mnss )
R07 to R12: temp
• R02 = Decl1 • R04
= Decl2 • R06 = Decl3
( in ° ' " )
Flag: F01
CF 01 <-> Equatorial coordinates in hh.mnss
SF 01 <-> Ecliptic coordinates in ° . '
''
Subroutines: /
01 LBL "SMC"
02 DEG 03 RCL 01 04 RCL 03 05 HMS- 06 HR 07 7.5 08 FS? 01 09 FRC 10 STO 10 11 * 12 STO 09 13 SIN 14 X^2 15 RCL 02 16 HR 17 COS 18 STO 11 19 * 20 RCL 04 21 HR 22 COS |
23 STO 12
24 * 25 RCL 02 26 RCL 04 27 HMS- 28 HR 29 2 30 / 31 STO 08 32 SIN 33 X^2 34 + 35 SQRT 36 ASIN 37 ST+ X 38 STO 07 39 RCL 03 40 RCL 05 41 HMS- 42 HR 43 RCL 10 44 * |
45 STO 10
46 SIN 47 X^2 48 RCL 12 49 * 50 RCL 06 51 HR 52 COS 53 STO 12 54 * 55 RCL 04 56 RCL 06 57 HMS- 58 HR 59 2 60 / 61 STO 00 62 SIN 63 X^2 64 + 65 SQRT 66 ASIN |
67 ST+ X
68 RCL 09 69 RCL 10 70 + 71 SIN 72 X^2 73 RCL 11 74 * 75 RCL 12 76 * 77 RCL 00 78 RCL 08 79 + 80 SIN 81 X^2 82 + 83 SQRT 84 ASIN 85 ST+ X 86 X<Y? 87 X<>Y 88 RCL 07 |
89 X<Y?
90 X<>Y 91 RDN 92 STO Z 93 X^2 94 X<>Y 95 ST* Z 96 X^2 97 + 98 R^ 99 X^2 100 - 101 X<0? 102 CLX 103 X<>Y 104 ST+ X 105 / 106 ACOS 107 SIN 108 / 109 HMS 110 END |
( 127 bytes / SIZE 013 )
STACK | INPUT | OUTPUT |
X | / | D ( ° ' " ) |
Where D is the diameter of the smallest circle containing the 3 bodies.
Example: On 1981/09/11 at 0h TT Mercury , Jupiter and Saturn had the following equatorial coordinates:
R.A1 = 12h41m08s63
R.A2 = 12h52m05s21
R.A3 = 12h39m28s11
Decl1 = -5°37'54"2
Decl2 = -4°22'26"2
Decl3 = -1°50'03"7
12.410863 STO 01
12.520521 STO 03 12.392811
STO 05
-5.37542 STO 02
-4.22262 STO 04
-1.50037 STO 06
-Equatorial coordinates, so CF 01
XEQ "SMC" >>>> D =
4°15'49"11
---Execution time = 10s---
Notes:
-If you are using the ecliptic coordinates ( in ° ' " ), key in
SF 01 before XEQ "SMC"
-Registers R01 thru R06 are unchanged.
Reference:
[1] Jean Meeus - "Astronomical Algorithms" - Willmann-Bell
- ISBN 0-943396-61-1