hp41programs

TDB-TT

Barycentric Dynamical Time for the HP-41


Overview
 

 1°)  Simplified Formula
 2°)  INPOP10
 3°)  Barycentric Coordinate Time
 

-Several time scales are available in astronomical work:
-The Terrestrial Time = TT  which is related to the International Atomic Time TAI  by  TT = TAI + 32.184 seconds.

-The Barycentric Dynamical Time = TDB = Temps Dynamique Barycentrique which is preferable for the motions of planets in the Solar system.
-Due to relativistic effects, there is a difference between TDB & TT that the following programs evaluate.
-This difference remains small: less than 2 milliseconds, at least several millennia around J2000.
 

1°)  Simplified Formula
 

-Reference [1] gives a very simple formula:

   TDB - TT = 0.001658 sin M + 0.000014 sin 2M    where   M is the Sun's mean anomaly.

-But the program hereunder employs the first terms of the series given in reference [2] or [3],
  those whose amplitude > 0.4 second over the time-span [1000,3000]
-The errors should not exceed 1 or 2 microseconds over this interval of time.
 

Data Registers:   R00 thru R03: temp   ( R00 = number of millennia since 2000/01/01  12h )
Flags: /
Subroutine:    "J0" or "J1" or J2"  ( cf "Julian & Gregorian Calendars for the HP-41" )
 
 

 01  LBL "TDB"
 02  DEG
 03  HR
 04  24
 05  /
 06  X<>Y
 07  XEQ "J0"
 08  +
 09  365250
 10  /
 11  STO 00       
 12  359993.729
 13  *
 14  STO 01 
 15  151
 16  +
 17  SIN
 18  43
 19  *
 20  RCL 00
 21  *
 22  RCL 01
 23  ST+ X
 24  60
 25  +
 26  SIN
 27  17
 28  *
 29  -
 30  RCL 01
 31  63
 32  +
 33  SIN
 34  1022
 35  *
 36  -
 37  RCL 00       
 38  ST* Y
 39  585178
 40  *
 41  STO 02 
 42  ST+ X
 43  RCL 01
 44  3
 45  *
 46  -
 47  27
 48  -
 49  SIN
 50  6
 51  *
 52  -
 53  RCL 01
 54  ST- 02
 55  RCL 00
 56  30349
 57  *
 58  STO 03       
 59  -
 60  ST+ X
 61  48
 62  -
 63  SIN
 64  8
 65  *
 66  -
 67  RCL 02      
 68  9
 69  -
 70  COS
 71  11
 72  *
 73  +
 74  RCL 01 
 75  RCL 03
 76  ST+ X
 77  -
 78  29
 79  +
 80  SIN
 81  12
 82  *
 83  -
 84  RCL 02       
 85  ST+ X
 86  17
 87  -
 88  SIN
 89  13
 90  *
 91  +
 92  RCL 00 
 93  4452671
 94  *
 95  68
 96  -
 97  SIN
 98  16
 99  *
100  +
101  RCL 00 
102  202
103  *
104  72
105  +
106  SIN
107  17
108  *
109  -
110  RCL 00       
111  12221
112  *
113  STO 02
114  42
115  -
116  SIN
117  23
118  *
119  +
120  RCL 01 
121  RCL 02
122  -
123  50
124  +
125  SIN
126  47
127  *
128  -
129  RCL 03 
130  25
131  +
132  SIN
133  48
134  *
135  +
136  RCL 01       
137  ST+ X
138  6
139  -
140  SIN
141  138
142  *
143  +
144  RCL 01
145  RCL 03 
146  -
147  65.7
148  +
149  SIN
150  224
151  *
152  -
153  RCL 01 
154  2.964
155  -
156  SIN
157  16567
158  *
159  +
160   E7
161  /
162  END

 
    ( 259 bytes / SIZE 004 )
 
 

      STACK        INPUTS      OUTPUTS
           Y  YYYY.MNDD             /
           X      HH.MNSS     TDB-TT (s)

 
Example1:      2012/08/29  16h41m37s  ( TT or TDB )

    2012.0829    ENTER^
        16.4137    XEQ "TDB"  >>>>   TDB-TT =  - 0.0013227 s               ---Execution time =18s---
 

Example2:      3000/04/04  1h23m45s  ( TT or TDB )

    3000.0404   ENTER^
          1.2345      R/S        >>>>    TDB-TT = + 0.0015386 s
 

Note:

-In reference [1], the inputs should be expressed in TDB whereas in refence [2], they should be expressed in TT.
-To the level of accuracy of this simplified formula, the difference is negligible.
 

2°)  INPOP10
 

-Like the JPL ephemerides DE4xx, the French ephemerides INPOP ( Integrations Numériques Planétaires de l'Observatoire de Paris )
 give the positions and velocities of the bodies of the Solar System under the form of Chebyshev Polynomials.
-But instead of the nutation, the difference TT-TDB is also provided: 12 coefficients for each time-span of 4 days, cf reference [4]
 
 

Data Registers:        •  R00 = bbb.eee               ( Registers R00 & Rbb thru Ree are to be initialized before executing "TDB2" )

                                   •  Rbb = JD1   •  Rbb+1 = JD2      •  Rbb+2 = a0    •  Rbb+3 = a1  ...............................   •  Ree = an
Flags: /
Subroutines:      "J0" or "J1" or J2"  ( cf "Julian & Gregorian Calendars for the HP-41" )
                             "CdT"  ( cf "Orthogonal Polynomials §5-b) or "Ephemerides and Chebyshev Polynomials for the HP-41" )
 
 

 01  LBL "TDB2"
 02  HR
 03  24
 04  /
 05  X<>Y
 06  XEQ "J0"
 07  2451544.5
 08  +
 09  RCL IND 00
 10  -
 11  ST+ Y
 12  ISG 00
 13  CLX
 14  RCL IND 00
 15  LASTX
 16  -
 17  2
 18  /
 19  /
 20  RCL 00
 21  X<>Y
 22  1
 23  ST+ Z
 24  ST- 00
 25  -
 26  XEQ "CdT"
 27  CHS
 28  END

 
( 59 bytes / SIZE ??? )
 
 

      STACK        INPUTS      OUTPUTS
           Y  YYYY.MNDD             /
           X      HH.MNSS     TDB-TT (s)

 
Example:       3000/04/04  1h23m45s

-In reference [4], we find a text file that contains the following constants:

      2816877.00         1st  Julian Date = 3000/03/31  12h  TDB
      2816881.00         2nd Julian Date = 3000/04/04  12h  TDB

     -0.15254574201273665E-02
     -0.17329122056166975E-04
     +0.52937767551143974E-06
     +0.27550591219803854E-08
     -0.34148361610150929E-09
     -0.69921867908556206E-11
    +0.85016053321457848E-12
    +0.21451895272947141E-14
     -0.14234824035252474E-14
    +0.17399035530231268E-15
     -0.19832610480477758E-17
     -0.14385810488591148E-17

-After storing these 14 coefficients in, say R01 to R14  ( control number = 1.014 )

    1.014  STO 00

    3000.0404   ENTER^
          1.2345   XEQ "TDB2"  >>>>    TDB-TT = + 0.001538845852 s

Notes:

-The argument of the INPOP ephemeris is TDB ( you can also choose TCB ), so if the input time is expressed in TT,
  we must execute "TDB2" again with Time = 1h32m45s + (TDB-TT) above to get the correct result
-In this example, it yields  TDB-TT = + 0.001538845852 s

-Here, the result is unchanged and it will be almost always the same because the HP-41 works with 10 digits.
-Anyway, one iteration is always sufficient.
 

3°)  Barycentric Coordinate Time
 

-Anothe time scale may also be used:  TCB = Temps Coordonné Barycentrique = Barycentric Coordinate Time.
-Whereas  TDB - TT  remains smaller than 0.002 second at least several millenia aroud J2000, the difference  TCB - TDB  is much larger:
-It was almost 0 in 1977 but in 2012 , TCB -TDB is about 17 seconds.

Formula:

   TCB = TDB + 1.550519768 E-8 ( JDTCB - 2443144.5003725 ) 86400 + 6.55 E-5 seconds

     where  JDTCB  is the Julian Date in the TCB scale.

-The program below uses an iteration to compute  TCB - TDB  for a given date expressed in  TDB
 
 

Data Registers:   R00-R01:  temp
Flags: /
Subroutine:     "J0" or "J1" or J2"  ( cf "Julian & Gregorian Calendars for the HP-41" )
 
 

 01  LBL "TCB"
 02  HR
 03  24
 04  /
 05  X<>Y
 06  XEQ "J0"
 07  +
 08  8400
 09  +
 10  3725 E-7
 11  -
 12  STO 00
 13  CLST
 14  STO 01
 15  LBL 01
 16  CLX
 17  86400
 18  /
 19  RCL 00
 20  +
 21  1.33964908 E-3
 22  *
 23  655 E-7
 24  +
 25  ENTER^
 26  X<> 01
 27  X#Y?
 28  GTO 01
 29  END

 
( 72 bytes / SIZE 002 )
 
 

      STACK        INPUTS      OUTPUTS
           Y  YYYY.MNDD             /
           X      HH.MNSS    TCB-TDB (s)

  Where the input time is expressed in TDB

Example:       3000/04/04  1h23m45s  TDB

     3000.0404   ENTER^
           1.2345   XEQ "TCB"   >>>>   500.6752393 seconds
 
 

References:

[1]  Robin M. Green - "Spherical Astronomy" - Cambridge University Press - ISBN  0-521-31779-7
[2] "Introduction aux Ephemerides Astronomiques" - EDP Sciences - ISBN 2-86883-298-9  ( in French )
[3]  Fairhead & Bretagnon - "An Analytica Formula for the Time Transformation TB-TT" Astronomy & Astrophysics 229, 240-247 ( 1990 )
[4]  http://www.imcce.fr/inpop
[5]  IAU 2006 Resolution B3