hp41programs

Toronto

Toronto Function for the HP-41


Overview
 

Toronto function is defined by

   T(m,n,r) = exp(-r2) [ Gam((m+1)/2) / n! ] r2n-m+1  M( (m+1)/2 , n+1 , r2 )

where M(a,b,x) = Kummer's function
 

Program Listing
 

Data Registers:   R00 thru R04: temp
Flags: /
Subroutines:   "KUM"  ( cf "Kummer's Function for the HP-41" )
                          "GAM" or "GAM+" ...  ( cf "Gamma Function for the HP-41" )
 
 

01  LBL "TOR" 
02  STO 03
03  CLX
04  SIGN
05  +
06  STO 02
07  X<>Y
08  STO 04
09  LASTX
10  +
11  2
12  /
13  STO 01
14  RCL 03
15  X^2
16  XEQ "KUM"
17  RCL 00
18  CHS
19  E^X
20  *
21  X<> 01
22  XEQ "GAM"
23  ST* 01
24  RCL 02
25  XEQ "GAM"
26  ST/ 01
27  RCL 01
28  RCL 03
29  RCL 02
30  ST+ X
31  1
32  -
33  RCL 04       
34  -
35  Y^X
36  *
37  END

 
   ( 61 bytes / SIZE 005 )
 
 

      STACK        INPUTS      OUTPUTS
           Z             m             /
           Y             n             /
           X             r        T(m,n,r) 

 
Example:

   2   SQRT
   3   SQRT
  PI   XEQ "TOR"  >>>>  T( sqrt(2),sqrt(3),PI ) = 0.963524225                ---Execution time = 26s---
 

Reference:

[1]   Abramowitz and Stegun - "Handbook of Mathematical Functions" -  Dover Publications -  ISBN  0-486-61272-4