Years & Months for the HP-41
Overview
-This routine computes the mean sidereal year, tropical year,
anomalistic year and lunar ( synodic ) month for a given instant.
-The following formulas are used:
1 sidereal year = 365.2563630 + 0.0000114
T - 0.0000007 T2 - 0.0000017 T3 - 0.0000002
T4 + 0.0000002 T5 + 0.0000002 T6
1 tropical year = ( 3652421905 - 6117 T - 42 T2
+ 2606 T3 + 118 T4 - 307 T5 - 94 T6
+ 13 T7 + 18 T8 ) E-7
1 anomalistic year = ( 3652596359 + 3117 T - 125
T2 + 1274 T3 + 673 T4 - 150 T5
- 84 T6 + 86 T7 + 26 T8 - 5 T9
) E-7
1 lunar month = 29.53058886 +
0.00002496 T - 0.00000364 T2 + 0.00000235
T3
where T is measured in unit of 10000 julian years from J2000.0
Program Listing
Data Registers: R00 = sidereal year
R01 = tropical year R02 = anomalistic year R03 = Lunar
month
Flags: /
Subroutines: /
01 LBL "STAYM"
02 2 E3 03 - 04 E4 05 / 06 2 07 RCL Y 08 2 09 * 10 + 11 * 12 2 13 - 14 * 15 17 16 - 17 * 18 7 19 - 20 * 21 114 22 + |
23 *
24 63630 25 + 26 STO 00 27 CLX 28 18 29 * 30 13 31 + 32 * 33 94 34 - 35 * 36 307 37 - 38 * 39 118 40 + 41 * 42 2606 43 + 44 * |
45 42
46 - 47 * 48 6117 49 - 50 * 51 78095 52 - 53 STO 01 54 CLX 55 5 56 * 57 CHS 58 26 59 + 60 * 61 86 62 + 63 * 64 84 65 - 66 * |
67 150
68 - 69 * 70 673 71 + 72 * 73 1274 74 + 75 * 76 125 77 - 78 * 79 3117 80 + 81 * 82 96359 83 + 84 E7 85 ST/ 00 86 ST/ 01 87 / 88 365.25 |
89 ST+ 00
90 ST+ 01 91 + 92 STO 02 93 CLX 94 235 95 * 96 364 97 - 98 * 99 2496 100 + 101 * 102 2953058886 103 + 104 E8 105 / 106 STO 03 107 RCL 02 108 RCL 01 109 RCL 00 110 END |
( 195 bytes / SIZE 004 )
STACK | INPUTS | OUTPUTS |
T | / | lunar month |
Z | / | anomalistic year |
Y | / | tropical year |
X | year | sidereal year |
All the results are expressed in days
Examples:
2000 XEQ "STYLM" >>>> 365.2563630
days
---Execution time = 7s---
RDN 365.2421905 days
RDN 365.2596359 days
RDN 29.53058886 days
5000 R/S
>>>> 365.2563663
RDN 365.2420137
RDN 365.2597322
RDN 29.53059608
12000 R/S
>>>> 365.2563722
RDN 365.2418100
RDN 365.2601171
RDN 29.53061253
-3000 R/S
>>>> 365.2563573
RDN 365.2424643
RDN 365.2594655
RDN 29.53057518
-8000 R/S
>>>> 365.2563524
RDN 365.2425710
RDN 365.2592527
RDN 29.53055791
Notes:
-The input may be fractional.
-The results are less accurate for the lunar months because the tidal
acceleration of the Moon is not known with a great precision.
-Outside [-8000,+12000] , the precision becomes doubtful.
Reference:
[1] Jean Meeus - "Astronomical Algorithms" - Willmann-Bell
- ISBN 0-943396-61-1
[2] Jacques Laskar - "Secular terms of classical planetary theories
using the results of general theory" - A&A 157, 59-70